CholeskyDecomposition.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math4.legacy.linear;
- import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
- import org.apache.commons.math4.core.jdkmath.JdkMath;
- /**
- * Calculates the Cholesky decomposition of a matrix.
- * <p>The Cholesky decomposition of a real symmetric positive-definite
- * matrix A consists of a lower triangular matrix L with same size such
- * that: A = LL<sup>T</sup>. In a sense, this is the square root of A.</p>
- * <p>This class is based on the class with similar name from the
- * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> library, with the
- * following changes:</p>
- * <ul>
- * <li>a {@link #getLT() getLT} method has been added,</li>
- * <li>the {@code isspd} method has been removed, since the constructor of
- * this class throws a {@link NonPositiveDefiniteMatrixException} when a
- * matrix cannot be decomposed,</li>
- * <li>a {@link #getDeterminant() getDeterminant} method has been added,</li>
- * <li>the {@code solve} method has been replaced by a {@link #getSolver()
- * getSolver} method and the equivalent method provided by the returned
- * {@link DecompositionSolver}.</li>
- * </ul>
- *
- * @see <a href="http://mathworld.wolfram.com/CholeskyDecomposition.html">MathWorld</a>
- * @see <a href="http://en.wikipedia.org/wiki/Cholesky_decomposition">Wikipedia</a>
- * @since 2.0 (changed to concrete class in 3.0)
- */
- public class CholeskyDecomposition {
- /**
- * Default threshold above which off-diagonal elements are considered too different
- * and matrix not symmetric.
- */
- public static final double DEFAULT_RELATIVE_SYMMETRY_THRESHOLD = 1.0e-15;
- /**
- * Default threshold below which diagonal elements are considered null
- * and matrix not positive definite.
- */
- public static final double DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD = 1.0e-10;
- /** Row-oriented storage for L<sup>T</sup> matrix data. */
- private final double[][] lTData;
- /** Cached value of L. */
- private RealMatrix cachedL;
- /** Cached value of LT. */
- private RealMatrix cachedLT;
- /**
- * Calculates the Cholesky decomposition of the given matrix.
- * <p>
- * Calling this constructor is equivalent to call {@link
- * #CholeskyDecomposition(RealMatrix, double, double)} with the
- * thresholds set to the default values {@link
- * #DEFAULT_RELATIVE_SYMMETRY_THRESHOLD} and {@link
- * #DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD}
- * </p>
- * @param matrix the matrix to decompose
- * @throws NonSquareMatrixException if the matrix is not square.
- * @throws NonSymmetricMatrixException if the matrix is not symmetric.
- * @throws NonPositiveDefiniteMatrixException if the matrix is not
- * strictly positive definite.
- * @see #CholeskyDecomposition(RealMatrix, double, double)
- * @see #DEFAULT_RELATIVE_SYMMETRY_THRESHOLD
- * @see #DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD
- */
- public CholeskyDecomposition(final RealMatrix matrix) {
- this(matrix, DEFAULT_RELATIVE_SYMMETRY_THRESHOLD,
- DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD);
- }
- /**
- * Calculates the Cholesky decomposition of the given matrix.
- * @param matrix the matrix to decompose
- * @param relativeSymmetryThreshold threshold above which off-diagonal
- * elements are considered too different and matrix not symmetric
- * @param absolutePositivityThreshold threshold below which diagonal
- * elements are considered null and matrix not positive definite
- * @throws NonSquareMatrixException if the matrix is not square.
- * @throws NonSymmetricMatrixException if the matrix is not symmetric.
- * @throws NonPositiveDefiniteMatrixException if the matrix is not
- * strictly positive definite.
- * @see #CholeskyDecomposition(RealMatrix)
- * @see #DEFAULT_RELATIVE_SYMMETRY_THRESHOLD
- * @see #DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD
- */
- public CholeskyDecomposition(final RealMatrix matrix,
- final double relativeSymmetryThreshold,
- final double absolutePositivityThreshold) {
- if (!matrix.isSquare()) {
- throw new NonSquareMatrixException(matrix.getRowDimension(),
- matrix.getColumnDimension());
- }
- final int order = matrix.getRowDimension();
- lTData = matrix.getData();
- cachedL = null;
- cachedLT = null;
- // check the matrix before transformation
- for (int i = 0; i < order; ++i) {
- final double[] lI = lTData[i];
- // check off-diagonal elements (and reset them to 0)
- for (int j = i + 1; j < order; ++j) {
- final double[] lJ = lTData[j];
- final double lIJ = lI[j];
- final double lJI = lJ[i];
- final double maxDelta =
- relativeSymmetryThreshold * JdkMath.max(JdkMath.abs(lIJ), JdkMath.abs(lJI));
- if (JdkMath.abs(lIJ - lJI) > maxDelta) {
- throw new NonSymmetricMatrixException(i, j, relativeSymmetryThreshold);
- }
- lJ[i] = 0;
- }
- }
- // transform the matrix
- for (int i = 0; i < order; ++i) {
- final double[] ltI = lTData[i];
- // check diagonal element
- if (ltI[i] <= absolutePositivityThreshold) {
- throw new NonPositiveDefiniteMatrixException(ltI[i], i, absolutePositivityThreshold);
- }
- ltI[i] = JdkMath.sqrt(ltI[i]);
- final double inverse = 1.0 / ltI[i];
- for (int q = order - 1; q > i; --q) {
- ltI[q] *= inverse;
- final double[] ltQ = lTData[q];
- for (int p = q; p < order; ++p) {
- ltQ[p] -= ltI[q] * ltI[p];
- }
- }
- }
- }
- /**
- * Returns the matrix L of the decomposition.
- * <p>L is an lower-triangular matrix</p>
- * @return the L matrix
- */
- public RealMatrix getL() {
- if (cachedL == null) {
- cachedL = getLT().transpose();
- }
- return cachedL;
- }
- /**
- * Returns the transpose of the matrix L of the decomposition.
- * <p>L<sup>T</sup> is an upper-triangular matrix</p>
- * @return the transpose of the matrix L of the decomposition
- */
- public RealMatrix getLT() {
- if (cachedLT == null) {
- cachedLT = MatrixUtils.createRealMatrix(lTData);
- }
- // return the cached matrix
- return cachedLT;
- }
- /**
- * Return the determinant of the matrix.
- * @return determinant of the matrix
- */
- public double getDeterminant() {
- double determinant = 1.0;
- for (int i = 0; i < lTData.length; ++i) {
- double lTii = lTData[i][i];
- determinant *= lTii * lTii;
- }
- return determinant;
- }
- /**
- * Get a solver for finding the A × X = B solution in least square sense.
- * @return a solver
- */
- public DecompositionSolver getSolver() {
- return new Solver(lTData);
- }
- /** Specialized solver. */
- private static final class Solver implements DecompositionSolver {
- /** Row-oriented storage for L<sup>T</sup> matrix data. */
- private final double[][] lTData;
- /**
- * Build a solver from decomposed matrix.
- * @param lTData row-oriented storage for L<sup>T</sup> matrix data
- */
- private Solver(final double[][] lTData) {
- this.lTData = lTData;
- }
- /** {@inheritDoc} */
- @Override
- public boolean isNonSingular() {
- // if we get this far, the matrix was positive definite, hence non-singular
- return true;
- }
- /** {@inheritDoc} */
- @Override
- public RealVector solve(final RealVector b) {
- final int m = lTData.length;
- if (b.getDimension() != m) {
- throw new DimensionMismatchException(b.getDimension(), m);
- }
- final double[] x = b.toArray();
- // Solve LY = b
- for (int j = 0; j < m; j++) {
- final double[] lJ = lTData[j];
- x[j] /= lJ[j];
- final double xJ = x[j];
- for (int i = j + 1; i < m; i++) {
- x[i] -= xJ * lJ[i];
- }
- }
- // Solve LTX = Y
- for (int j = m - 1; j >= 0; j--) {
- x[j] /= lTData[j][j];
- final double xJ = x[j];
- for (int i = 0; i < j; i++) {
- x[i] -= xJ * lTData[i][j];
- }
- }
- return new ArrayRealVector(x, false);
- }
- /** {@inheritDoc} */
- @Override
- public RealMatrix solve(RealMatrix b) {
- final int m = lTData.length;
- if (b.getRowDimension() != m) {
- throw new DimensionMismatchException(b.getRowDimension(), m);
- }
- final int nColB = b.getColumnDimension();
- final double[][] x = b.getData();
- // Solve LY = b
- for (int j = 0; j < m; j++) {
- final double[] lJ = lTData[j];
- final double lJJ = lJ[j];
- final double[] xJ = x[j];
- for (int k = 0; k < nColB; ++k) {
- xJ[k] /= lJJ;
- }
- for (int i = j + 1; i < m; i++) {
- final double[] xI = x[i];
- final double lJI = lJ[i];
- for (int k = 0; k < nColB; ++k) {
- xI[k] -= xJ[k] * lJI;
- }
- }
- }
- // Solve LTX = Y
- for (int j = m - 1; j >= 0; j--) {
- final double lJJ = lTData[j][j];
- final double[] xJ = x[j];
- for (int k = 0; k < nColB; ++k) {
- xJ[k] /= lJJ;
- }
- for (int i = 0; i < j; i++) {
- final double[] xI = x[i];
- final double lIJ = lTData[i][j];
- for (int k = 0; k < nColB; ++k) {
- xI[k] -= xJ[k] * lIJ;
- }
- }
- }
- return new Array2DRowRealMatrix(x);
- }
- /**
- * Get the inverse of the decomposed matrix.
- *
- * @return the inverse matrix.
- */
- @Override
- public RealMatrix getInverse() {
- return solve(MatrixUtils.createRealIdentityMatrix(lTData.length));
- }
- }
- }