EigenDecomposition.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math4.legacy.linear;
- import org.apache.commons.numbers.complex.Complex;
- import org.apache.commons.numbers.core.Precision;
- import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
- import org.apache.commons.math4.legacy.exception.MathArithmeticException;
- import org.apache.commons.math4.legacy.exception.MathUnsupportedOperationException;
- import org.apache.commons.math4.legacy.exception.MaxCountExceededException;
- import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
- import org.apache.commons.math4.core.jdkmath.JdkMath;
- /**
- * Calculates the eigen decomposition of a real matrix.
- * <p>
- * The eigen decomposition of matrix A is a set of two matrices:
- * V and D such that A = V × D × V<sup>T</sup>.
- * A, V and D are all m × m matrices.
- * <p>
- * This class is similar in spirit to the {@code EigenvalueDecomposition}
- * class from the <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a>
- * library, with the following changes:
- * <ul>
- * <li>a {@link #getVT() getVt} method has been added,</li>
- * <li>two {@link #getRealEigenvalue(int) getRealEigenvalue} and
- * {@link #getImagEigenvalue(int) getImagEigenvalue} methods to pick up a
- * single eigenvalue have been added,</li>
- * <li>a {@link #getEigenvector(int) getEigenvector} method to pick up a
- * single eigenvector has been added,</li>
- * <li>a {@link #getDeterminant() getDeterminant} method has been added.</li>
- * <li>a {@link #getSolver() getSolver} method has been added.</li>
- * </ul>
- * <p>
- * As of 3.1, this class supports general real matrices (both symmetric and non-symmetric):
- * <p>
- * If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is diagonal
- * and the eigenvector matrix V is orthogonal, i.e.
- * {@code A = V.multiply(D.multiply(V.transpose()))} and
- * {@code V.multiply(V.transpose())} equals the identity matrix.
- * </p>
- * <p>
- * If A is not symmetric, then the eigenvalue matrix D is block diagonal with the real
- * eigenvalues in 1-by-1 blocks and any complex eigenvalues, lambda + i*mu, in 2-by-2
- * blocks:
- * <pre>
- * [lambda, mu ]
- * [ -mu, lambda]
- * </pre>
- * The columns of V represent the eigenvectors in the sense that {@code A*V = V*D},
- * i.e. A.multiply(V) equals V.multiply(D).
- * The matrix V may be badly conditioned, or even singular, so the validity of the
- * equation {@code A = V*D*inverse(V)} depends upon the condition of V.
- * <p>
- * This implementation is based on the paper by A. Drubrulle, R.S. Martin and
- * J.H. Wilkinson "The Implicit QL Algorithm" in Wilksinson and Reinsch (1971)
- * Handbook for automatic computation, vol. 2, Linear algebra, Springer-Verlag,
- * New-York.
- *
- * @see <a href="http://mathworld.wolfram.com/EigenDecomposition.html">MathWorld</a>
- * @see <a href="http://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix">Wikipedia</a>
- * @since 2.0 (changed to concrete class in 3.0)
- */
- public class EigenDecomposition {
- /** Internally used epsilon criteria. */
- private static final double EPSILON = 1e-12;
- /** Maximum number of iterations accepted in the implicit QL transformation. */
- private static final byte MAX_ITER = 30;
- /** Main diagonal of the tridiagonal matrix. */
- private double[] main;
- /** Secondary diagonal of the tridiagonal matrix. */
- private double[] secondary;
- /**
- * Transformer to tridiagonal (may be null if matrix is already
- * tridiagonal).
- */
- private TriDiagonalTransformer transformer;
- /** Real part of the realEigenvalues. */
- private double[] realEigenvalues;
- /** Imaginary part of the realEigenvalues. */
- private double[] imagEigenvalues;
- /** Eigenvectors. */
- private ArrayRealVector[] eigenvectors;
- /** Cached value of V. */
- private RealMatrix cachedV;
- /** Cached value of D. */
- private RealMatrix cachedD;
- /** Cached value of Vt. */
- private RealMatrix cachedVt;
- /** Whether the matrix is symmetric. */
- private final boolean isSymmetric;
- /**
- * Calculates the eigen decomposition of the given real matrix.
- * <p>
- * Supports decomposition of a general matrix since 3.1.
- *
- * @param matrix Matrix to decompose.
- * @throws MaxCountExceededException if the algorithm fails to converge.
- * @throws MathArithmeticException if the decomposition of a general matrix
- * results in a matrix with zero norm
- * @since 3.1
- */
- public EigenDecomposition(final RealMatrix matrix)
- throws MathArithmeticException {
- final double symTol = 10 * matrix.getRowDimension() * matrix.getColumnDimension() * Precision.EPSILON;
- isSymmetric = MatrixUtils.isSymmetric(matrix, symTol);
- if (isSymmetric) {
- transformToTridiagonal(matrix);
- findEigenVectors(transformer.getQ().getData());
- } else {
- final SchurTransformer t = transformToSchur(matrix);
- findEigenVectorsFromSchur(t);
- }
- }
- /**
- * Calculates the eigen decomposition of the symmetric tridiagonal
- * matrix. The Householder matrix is assumed to be the identity matrix.
- *
- * @param main Main diagonal of the symmetric tridiagonal form.
- * @param secondary Secondary of the tridiagonal form.
- * @throws MaxCountExceededException if the algorithm fails to converge.
- * @since 3.1
- */
- public EigenDecomposition(final double[] main, final double[] secondary) {
- isSymmetric = true;
- this.main = main.clone();
- this.secondary = secondary.clone();
- transformer = null;
- final int size = main.length;
- final double[][] z = new double[size][size];
- for (int i = 0; i < size; i++) {
- z[i][i] = 1.0;
- }
- findEigenVectors(z);
- }
- /**
- * Gets the matrix V of the decomposition.
- * V is an orthogonal matrix, i.e. its transpose is also its inverse.
- * The columns of V are the eigenvectors of the original matrix.
- * No assumption is made about the orientation of the system axes formed
- * by the columns of V (e.g. in a 3-dimension space, V can form a left-
- * or right-handed system).
- *
- * @return the V matrix.
- */
- public RealMatrix getV() {
- if (cachedV == null) {
- final int m = eigenvectors.length;
- cachedV = MatrixUtils.createRealMatrix(m, m);
- for (int k = 0; k < m; ++k) {
- cachedV.setColumnVector(k, eigenvectors[k]);
- }
- }
- // return the cached matrix
- return cachedV;
- }
- /**
- * Gets the block diagonal matrix D of the decomposition.
- * D is a block diagonal matrix.
- * Real eigenvalues are on the diagonal while complex values are on
- * 2x2 blocks { {real +imaginary}, {-imaginary, real} }.
- *
- * @return the D matrix.
- *
- * @see #getRealEigenvalues()
- * @see #getImagEigenvalues()
- */
- public RealMatrix getD() {
- if (cachedD == null) {
- // cache the matrix for subsequent calls
- cachedD = MatrixUtils.createRealMatrixWithDiagonal(realEigenvalues);
- for (int i = 0; i < imagEigenvalues.length; i++) {
- if (Precision.compareTo(imagEigenvalues[i], 0.0, EPSILON) > 0) {
- cachedD.setEntry(i, i+1, imagEigenvalues[i]);
- } else if (Precision.compareTo(imagEigenvalues[i], 0.0, EPSILON) < 0) {
- cachedD.setEntry(i, i-1, imagEigenvalues[i]);
- }
- }
- }
- return cachedD;
- }
- /**
- * Gets the transpose of the matrix V of the decomposition.
- * V is an orthogonal matrix, i.e. its transpose is also its inverse.
- * The columns of V are the eigenvectors of the original matrix.
- * No assumption is made about the orientation of the system axes formed
- * by the columns of V (e.g. in a 3-dimension space, V can form a left-
- * or right-handed system).
- *
- * @return the transpose of the V matrix.
- */
- public RealMatrix getVT() {
- if (cachedVt == null) {
- final int m = eigenvectors.length;
- cachedVt = MatrixUtils.createRealMatrix(m, m);
- for (int k = 0; k < m; ++k) {
- cachedVt.setRowVector(k, eigenvectors[k]);
- }
- }
- // return the cached matrix
- return cachedVt;
- }
- /**
- * Returns whether the calculated eigen values are complex or real.
- * <p>The method performs a zero check for each element of the
- * {@link #getImagEigenvalues()} array and returns {@code true} if any
- * element is not equal to zero.
- *
- * @return {@code true} if the eigen values are complex, {@code false} otherwise
- * @since 3.1
- */
- public boolean hasComplexEigenvalues() {
- for (int i = 0; i < imagEigenvalues.length; i++) {
- if (!Precision.equals(imagEigenvalues[i], 0.0, EPSILON)) {
- return true;
- }
- }
- return false;
- }
- /**
- * Gets a copy of the real parts of the eigenvalues of the original matrix.
- *
- * @return a copy of the real parts of the eigenvalues of the original matrix.
- *
- * @see #getD()
- * @see #getRealEigenvalue(int)
- * @see #getImagEigenvalues()
- */
- public double[] getRealEigenvalues() {
- return realEigenvalues.clone();
- }
- /**
- * Returns the real part of the i<sup>th</sup> eigenvalue of the original
- * matrix.
- *
- * @param i index of the eigenvalue (counting from 0)
- * @return real part of the i<sup>th</sup> eigenvalue of the original
- * matrix.
- *
- * @see #getD()
- * @see #getRealEigenvalues()
- * @see #getImagEigenvalue(int)
- */
- public double getRealEigenvalue(final int i) {
- return realEigenvalues[i];
- }
- /**
- * Gets a copy of the imaginary parts of the eigenvalues of the original
- * matrix.
- *
- * @return a copy of the imaginary parts of the eigenvalues of the original
- * matrix.
- *
- * @see #getD()
- * @see #getImagEigenvalue(int)
- * @see #getRealEigenvalues()
- */
- public double[] getImagEigenvalues() {
- return imagEigenvalues.clone();
- }
- /**
- * Gets the imaginary part of the i<sup>th</sup> eigenvalue of the original
- * matrix.
- *
- * @param i Index of the eigenvalue (counting from 0).
- * @return the imaginary part of the i<sup>th</sup> eigenvalue of the original
- * matrix.
- *
- * @see #getD()
- * @see #getImagEigenvalues()
- * @see #getRealEigenvalue(int)
- */
- public double getImagEigenvalue(final int i) {
- return imagEigenvalues[i];
- }
- /**
- * Gets a copy of the i<sup>th</sup> eigenvector of the original matrix.
- *
- * @param i Index of the eigenvector (counting from 0).
- * @return a copy of the i<sup>th</sup> eigenvector of the original matrix.
- * @see #getD()
- */
- public RealVector getEigenvector(final int i) {
- return eigenvectors[i].copy();
- }
- /**
- * Computes the determinant of the matrix.
- *
- * @return the determinant of the matrix.
- */
- public double getDeterminant() {
- double determinant = 1;
- for (double lambda : realEigenvalues) {
- determinant *= lambda;
- }
- return determinant;
- }
- /**
- * Computes the square-root of the matrix.
- * This implementation assumes that the matrix is symmetric and positive
- * definite.
- *
- * @return the square-root of the matrix.
- * @throws MathUnsupportedOperationException if the matrix is not
- * symmetric or not positive definite.
- * @since 3.1
- */
- public RealMatrix getSquareRoot() {
- if (!isSymmetric) {
- throw new MathUnsupportedOperationException();
- }
- final double[] sqrtEigenValues = new double[realEigenvalues.length];
- for (int i = 0; i < realEigenvalues.length; i++) {
- final double eigen = realEigenvalues[i];
- if (eigen <= 0) {
- throw new MathUnsupportedOperationException();
- }
- sqrtEigenValues[i] = JdkMath.sqrt(eigen);
- }
- final RealMatrix sqrtEigen = MatrixUtils.createRealDiagonalMatrix(sqrtEigenValues);
- final RealMatrix v = getV();
- final RealMatrix vT = getVT();
- return v.multiply(sqrtEigen).multiply(vT);
- }
- /**
- * Gets a solver for finding the A × X = B solution in exact
- * linear sense.
- * <p>
- * Since 3.1, eigen decomposition of a general matrix is supported,
- * but the {@link DecompositionSolver} only supports real eigenvalues.
- *
- * @return a solver
- * @throws MathUnsupportedOperationException if the decomposition resulted in
- * complex eigenvalues
- */
- public DecompositionSolver getSolver() {
- if (hasComplexEigenvalues()) {
- throw new MathUnsupportedOperationException();
- }
- return new Solver(realEigenvalues, imagEigenvalues, eigenvectors);
- }
- /** Specialized solver. */
- private static final class Solver implements DecompositionSolver {
- /** Real part of the realEigenvalues. */
- private final double[] realEigenvalues;
- /** Imaginary part of the realEigenvalues. */
- private final double[] imagEigenvalues;
- /** Eigenvectors. */
- private final ArrayRealVector[] eigenvectors;
- /**
- * Builds a solver from decomposed matrix.
- *
- * @param realEigenvalues Real parts of the eigenvalues.
- * @param imagEigenvalues Imaginary parts of the eigenvalues.
- * @param eigenvectors Eigenvectors.
- */
- private Solver(final double[] realEigenvalues,
- final double[] imagEigenvalues,
- final ArrayRealVector[] eigenvectors) {
- this.realEigenvalues = realEigenvalues;
- this.imagEigenvalues = imagEigenvalues;
- this.eigenvectors = eigenvectors;
- }
- /**
- * Solves the linear equation A × X = B for symmetric matrices A.
- * <p>
- * This method only finds exact linear solutions, i.e. solutions for
- * which ||A × X - B|| is exactly 0.
- * </p>
- *
- * @param b Right-hand side of the equation A × X = B.
- * @return a Vector X that minimizes the two norm of A × X - B.
- *
- * @throws DimensionMismatchException if the matrices dimensions do not match.
- * @throws SingularMatrixException if the decomposed matrix is singular.
- */
- @Override
- public RealVector solve(final RealVector b) {
- if (!isNonSingular()) {
- throw new SingularMatrixException();
- }
- final int m = realEigenvalues.length;
- if (b.getDimension() != m) {
- throw new DimensionMismatchException(b.getDimension(), m);
- }
- final double[] bp = new double[m];
- for (int i = 0; i < m; ++i) {
- final ArrayRealVector v = eigenvectors[i];
- final double[] vData = v.getDataRef();
- final double s = v.dotProduct(b) / realEigenvalues[i];
- for (int j = 0; j < m; ++j) {
- bp[j] += s * vData[j];
- }
- }
- return new ArrayRealVector(bp, false);
- }
- /** {@inheritDoc} */
- @Override
- public RealMatrix solve(RealMatrix b) {
- if (!isNonSingular()) {
- throw new SingularMatrixException();
- }
- final int m = realEigenvalues.length;
- if (b.getRowDimension() != m) {
- throw new DimensionMismatchException(b.getRowDimension(), m);
- }
- final int nColB = b.getColumnDimension();
- final double[][] bp = new double[m][nColB];
- final double[] tmpCol = new double[m];
- for (int k = 0; k < nColB; ++k) {
- for (int i = 0; i < m; ++i) {
- tmpCol[i] = b.getEntry(i, k);
- bp[i][k] = 0;
- }
- for (int i = 0; i < m; ++i) {
- final ArrayRealVector v = eigenvectors[i];
- final double[] vData = v.getDataRef();
- double s = 0;
- for (int j = 0; j < m; ++j) {
- s += v.getEntry(j) * tmpCol[j];
- }
- s /= realEigenvalues[i];
- for (int j = 0; j < m; ++j) {
- bp[j][k] += s * vData[j];
- }
- }
- }
- return new Array2DRowRealMatrix(bp, false);
- }
- /**
- * Checks whether the decomposed matrix is non-singular.
- *
- * @return true if the decomposed matrix is non-singular.
- */
- @Override
- public boolean isNonSingular() {
- double largestEigenvalueNorm = 0.0;
- // Looping over all values (in case they are not sorted in decreasing
- // order of their norm).
- for (int i = 0; i < realEigenvalues.length; ++i) {
- largestEigenvalueNorm = JdkMath.max(largestEigenvalueNorm, eigenvalueNorm(i));
- }
- // Corner case: zero matrix, all exactly 0 eigenvalues
- if (largestEigenvalueNorm == 0.0) {
- return false;
- }
- for (int i = 0; i < realEigenvalues.length; ++i) {
- // Looking for eigenvalues that are 0, where we consider anything much much smaller
- // than the largest eigenvalue to be effectively 0.
- if (Precision.equals(eigenvalueNorm(i) / largestEigenvalueNorm, 0, EPSILON)) {
- return false;
- }
- }
- return true;
- }
- /**
- * @param i which eigenvalue to find the norm of
- * @return the norm of ith (complex) eigenvalue.
- */
- private double eigenvalueNorm(int i) {
- final double re = realEigenvalues[i];
- final double im = imagEigenvalues[i];
- return JdkMath.sqrt(re * re + im * im);
- }
- /**
- * Get the inverse of the decomposed matrix.
- *
- * @return the inverse matrix.
- * @throws SingularMatrixException if the decomposed matrix is singular.
- */
- @Override
- public RealMatrix getInverse() {
- if (!isNonSingular()) {
- throw new SingularMatrixException();
- }
- final int m = realEigenvalues.length;
- final double[][] invData = new double[m][m];
- for (int i = 0; i < m; ++i) {
- final double[] invI = invData[i];
- for (int j = 0; j < m; ++j) {
- double invIJ = 0;
- for (int k = 0; k < m; ++k) {
- final double[] vK = eigenvectors[k].getDataRef();
- invIJ += vK[i] * vK[j] / realEigenvalues[k];
- }
- invI[j] = invIJ;
- }
- }
- return MatrixUtils.createRealMatrix(invData);
- }
- }
- /**
- * Transforms the matrix to tridiagonal form.
- *
- * @param matrix Matrix to transform.
- */
- private void transformToTridiagonal(final RealMatrix matrix) {
- // transform the matrix to tridiagonal
- transformer = new TriDiagonalTransformer(matrix);
- main = transformer.getMainDiagonalRef();
- secondary = transformer.getSecondaryDiagonalRef();
- }
- /**
- * Find eigenvalues and eigenvectors (Dubrulle et al., 1971).
- *
- * @param householderMatrix Householder matrix of the transformation
- * to tridiagonal form.
- */
- private void findEigenVectors(final double[][] householderMatrix) {
- final double[][]z = householderMatrix.clone();
- final int n = main.length;
- realEigenvalues = new double[n];
- imagEigenvalues = new double[n];
- final double[] e = new double[n];
- for (int i = 0; i < n - 1; i++) {
- realEigenvalues[i] = main[i];
- e[i] = secondary[i];
- }
- realEigenvalues[n - 1] = main[n - 1];
- e[n - 1] = 0;
- // Determine the largest main and secondary value in absolute term.
- double maxAbsoluteValue = 0;
- for (int i = 0; i < n; i++) {
- if (JdkMath.abs(realEigenvalues[i]) > maxAbsoluteValue) {
- maxAbsoluteValue = JdkMath.abs(realEigenvalues[i]);
- }
- if (JdkMath.abs(e[i]) > maxAbsoluteValue) {
- maxAbsoluteValue = JdkMath.abs(e[i]);
- }
- }
- // Make null any main and secondary value too small to be significant
- if (maxAbsoluteValue != 0) {
- for (int i=0; i < n; i++) {
- if (JdkMath.abs(realEigenvalues[i]) <= Precision.EPSILON * maxAbsoluteValue) {
- realEigenvalues[i] = 0;
- }
- if (JdkMath.abs(e[i]) <= Precision.EPSILON * maxAbsoluteValue) {
- e[i]=0;
- }
- }
- }
- for (int j = 0; j < n; j++) {
- int its = 0;
- int m;
- do {
- for (m = j; m < n - 1; m++) {
- double delta = JdkMath.abs(realEigenvalues[m]) +
- JdkMath.abs(realEigenvalues[m + 1]);
- if (JdkMath.abs(e[m]) + delta == delta) {
- break;
- }
- }
- if (m != j) {
- if (its == MAX_ITER) {
- throw new MaxCountExceededException(LocalizedFormats.CONVERGENCE_FAILED,
- MAX_ITER);
- }
- its++;
- double q = (realEigenvalues[j + 1] - realEigenvalues[j]) / (2 * e[j]);
- double t = JdkMath.sqrt(1 + q * q);
- if (q < 0.0) {
- q = realEigenvalues[m] - realEigenvalues[j] + e[j] / (q - t);
- } else {
- q = realEigenvalues[m] - realEigenvalues[j] + e[j] / (q + t);
- }
- double u = 0.0;
- double s = 1.0;
- double c = 1.0;
- int i;
- for (i = m - 1; i >= j; i--) {
- double p = s * e[i];
- double h = c * e[i];
- if (JdkMath.abs(p) >= JdkMath.abs(q)) {
- c = q / p;
- t = JdkMath.sqrt(c * c + 1.0);
- e[i + 1] = p * t;
- s = 1.0 / t;
- c *= s;
- } else {
- s = p / q;
- t = JdkMath.sqrt(s * s + 1.0);
- e[i + 1] = q * t;
- c = 1.0 / t;
- s *= c;
- }
- if (e[i + 1] == 0.0) {
- realEigenvalues[i + 1] -= u;
- e[m] = 0.0;
- break;
- }
- q = realEigenvalues[i + 1] - u;
- t = (realEigenvalues[i] - q) * s + 2.0 * c * h;
- u = s * t;
- realEigenvalues[i + 1] = q + u;
- q = c * t - h;
- for (int ia = 0; ia < n; ia++) {
- p = z[ia][i + 1];
- z[ia][i + 1] = s * z[ia][i] + c * p;
- z[ia][i] = c * z[ia][i] - s * p;
- }
- }
- if (t == 0.0 && i >= j) {
- continue;
- }
- realEigenvalues[j] -= u;
- e[j] = q;
- e[m] = 0.0;
- }
- } while (m != j);
- }
- //Sort the eigen values (and vectors) in increase order
- for (int i = 0; i < n; i++) {
- int k = i;
- double p = realEigenvalues[i];
- for (int j = i + 1; j < n; j++) {
- if (realEigenvalues[j] > p) {
- k = j;
- p = realEigenvalues[j];
- }
- }
- if (k != i) {
- realEigenvalues[k] = realEigenvalues[i];
- realEigenvalues[i] = p;
- for (int j = 0; j < n; j++) {
- p = z[j][i];
- z[j][i] = z[j][k];
- z[j][k] = p;
- }
- }
- }
- // Determine the largest eigen value in absolute term.
- maxAbsoluteValue = 0;
- for (int i = 0; i < n; i++) {
- if (JdkMath.abs(realEigenvalues[i]) > maxAbsoluteValue) {
- maxAbsoluteValue=JdkMath.abs(realEigenvalues[i]);
- }
- }
- // Make null any eigen value too small to be significant
- if (maxAbsoluteValue != 0.0) {
- for (int i=0; i < n; i++) {
- if (JdkMath.abs(realEigenvalues[i]) < Precision.EPSILON * maxAbsoluteValue) {
- realEigenvalues[i] = 0;
- }
- }
- }
- eigenvectors = new ArrayRealVector[n];
- final double[] tmp = new double[n];
- for (int i = 0; i < n; i++) {
- for (int j = 0; j < n; j++) {
- tmp[j] = z[j][i];
- }
- eigenvectors[i] = new ArrayRealVector(tmp);
- }
- }
- /**
- * Transforms the matrix to Schur form and calculates the eigenvalues.
- *
- * @param matrix Matrix to transform.
- * @return the {@link SchurTransformer Shur transform} for this matrix
- */
- private SchurTransformer transformToSchur(final RealMatrix matrix) {
- final SchurTransformer schurTransform = new SchurTransformer(matrix);
- final double[][] matT = schurTransform.getT().getData();
- realEigenvalues = new double[matT.length];
- imagEigenvalues = new double[matT.length];
- for (int i = 0; i < realEigenvalues.length; i++) {
- if (i == (realEigenvalues.length - 1) ||
- Precision.equals(matT[i + 1][i], 0.0, EPSILON)) {
- realEigenvalues[i] = matT[i][i];
- } else {
- final double x = matT[i + 1][i + 1];
- final double p = 0.5 * (matT[i][i] - x);
- final double z = JdkMath.sqrt(JdkMath.abs(p * p + matT[i + 1][i] * matT[i][i + 1]));
- realEigenvalues[i] = x + p;
- imagEigenvalues[i] = z;
- realEigenvalues[i + 1] = x + p;
- imagEigenvalues[i + 1] = -z;
- i++;
- }
- }
- return schurTransform;
- }
- /**
- * Performs a division of two complex numbers.
- *
- * @param xr real part of the first number
- * @param xi imaginary part of the first number
- * @param yr real part of the second number
- * @param yi imaginary part of the second number
- * @return result of the complex division
- */
- private Complex cdiv(final double xr, final double xi,
- final double yr, final double yi) {
- return Complex.ofCartesian(xr, xi).divide(Complex.ofCartesian(yr, yi));
- }
- /**
- * Find eigenvectors from a matrix transformed to Schur form.
- *
- * @param schur the schur transformation of the matrix
- * @throws MathArithmeticException if the Schur form has a norm of zero
- */
- private void findEigenVectorsFromSchur(final SchurTransformer schur)
- throws MathArithmeticException {
- final double[][] matrixT = schur.getT().getData();
- final double[][] matrixP = schur.getP().getData();
- final int n = matrixT.length;
- // compute matrix norm
- double norm = 0.0;
- for (int i = 0; i < n; i++) {
- for (int j = JdkMath.max(i - 1, 0); j < n; j++) {
- norm += JdkMath.abs(matrixT[i][j]);
- }
- }
- // we can not handle a matrix with zero norm
- if (Precision.equals(norm, 0.0, EPSILON)) {
- throw new MathArithmeticException(LocalizedFormats.ZERO_NORM);
- }
- // Backsubstitute to find vectors of upper triangular form
- double r = 0.0;
- double s = 0.0;
- double z = 0.0;
- for (int idx = n - 1; idx >= 0; idx--) {
- double p = realEigenvalues[idx];
- double q = imagEigenvalues[idx];
- if (Precision.equals(q, 0.0)) {
- // Real vector
- int l = idx;
- matrixT[idx][idx] = 1.0;
- for (int i = idx - 1; i >= 0; i--) {
- double w = matrixT[i][i] - p;
- r = 0.0;
- for (int j = l; j <= idx; j++) {
- r += matrixT[i][j] * matrixT[j][idx];
- }
- if (Precision.compareTo(imagEigenvalues[i], 0.0, EPSILON) < 0) {
- z = w;
- s = r;
- } else {
- l = i;
- if (Precision.equals(imagEigenvalues[i], 0.0)) {
- if (w != 0.0) {
- matrixT[i][idx] = -r / w;
- } else {
- matrixT[i][idx] = -r / (Precision.EPSILON * norm);
- }
- } else {
- // Solve real equations
- double x = matrixT[i][i + 1];
- double y = matrixT[i + 1][i];
- q = (realEigenvalues[i] - p) * (realEigenvalues[i] - p) +
- imagEigenvalues[i] * imagEigenvalues[i];
- double t = (x * s - z * r) / q;
- matrixT[i][idx] = t;
- if (JdkMath.abs(x) > JdkMath.abs(z)) {
- matrixT[i + 1][idx] = (-r - w * t) / x;
- } else {
- matrixT[i + 1][idx] = (-s - y * t) / z;
- }
- }
- // Overflow control
- double t = JdkMath.abs(matrixT[i][idx]);
- if ((Precision.EPSILON * t) * t > 1) {
- for (int j = i; j <= idx; j++) {
- matrixT[j][idx] /= t;
- }
- }
- }
- }
- } else if (q < 0.0) {
- // Complex vector
- int l = idx - 1;
- // Last vector component imaginary so matrix is triangular
- if (JdkMath.abs(matrixT[idx][idx - 1]) > JdkMath.abs(matrixT[idx - 1][idx])) {
- matrixT[idx - 1][idx - 1] = q / matrixT[idx][idx - 1];
- matrixT[idx - 1][idx] = -(matrixT[idx][idx] - p) / matrixT[idx][idx - 1];
- } else {
- final Complex result = cdiv(0.0, -matrixT[idx - 1][idx],
- matrixT[idx - 1][idx - 1] - p, q);
- matrixT[idx - 1][idx - 1] = result.getReal();
- matrixT[idx - 1][idx] = result.getImaginary();
- }
- matrixT[idx][idx - 1] = 0.0;
- matrixT[idx][idx] = 1.0;
- for (int i = idx - 2; i >= 0; i--) {
- double ra = 0.0;
- double sa = 0.0;
- for (int j = l; j <= idx; j++) {
- ra += matrixT[i][j] * matrixT[j][idx - 1];
- sa += matrixT[i][j] * matrixT[j][idx];
- }
- double w = matrixT[i][i] - p;
- if (Precision.compareTo(imagEigenvalues[i], 0.0, EPSILON) < 0) {
- z = w;
- r = ra;
- s = sa;
- } else {
- l = i;
- if (Precision.equals(imagEigenvalues[i], 0.0)) {
- final Complex c = cdiv(-ra, -sa, w, q);
- matrixT[i][idx - 1] = c.getReal();
- matrixT[i][idx] = c.getImaginary();
- } else {
- // Solve complex equations
- double x = matrixT[i][i + 1];
- double y = matrixT[i + 1][i];
- double vr = (realEigenvalues[i] - p) * (realEigenvalues[i] - p) +
- imagEigenvalues[i] * imagEigenvalues[i] - q * q;
- final double vi = (realEigenvalues[i] - p) * 2.0 * q;
- if (Precision.equals(vr, 0.0) && Precision.equals(vi, 0.0)) {
- vr = Precision.EPSILON * norm *
- (JdkMath.abs(w) + JdkMath.abs(q) + JdkMath.abs(x) +
- JdkMath.abs(y) + JdkMath.abs(z));
- }
- final Complex c = cdiv(x * r - z * ra + q * sa,
- x * s - z * sa - q * ra, vr, vi);
- matrixT[i][idx - 1] = c.getReal();
- matrixT[i][idx] = c.getImaginary();
- if (JdkMath.abs(x) > (JdkMath.abs(z) + JdkMath.abs(q))) {
- matrixT[i + 1][idx - 1] = (-ra - w * matrixT[i][idx - 1] +
- q * matrixT[i][idx]) / x;
- matrixT[i + 1][idx] = (-sa - w * matrixT[i][idx] -
- q * matrixT[i][idx - 1]) / x;
- } else {
- final Complex c2 = cdiv(-r - y * matrixT[i][idx - 1],
- -s - y * matrixT[i][idx], z, q);
- matrixT[i + 1][idx - 1] = c2.getReal();
- matrixT[i + 1][idx] = c2.getImaginary();
- }
- }
- // Overflow control
- double t = JdkMath.max(JdkMath.abs(matrixT[i][idx - 1]),
- JdkMath.abs(matrixT[i][idx]));
- if ((Precision.EPSILON * t) * t > 1) {
- for (int j = i; j <= idx; j++) {
- matrixT[j][idx - 1] /= t;
- matrixT[j][idx] /= t;
- }
- }
- }
- }
- }
- }
- // Back transformation to get eigenvectors of original matrix
- for (int j = n - 1; j >= 0; j--) {
- for (int i = 0; i <= n - 1; i++) {
- z = 0.0;
- for (int k = 0; k <= JdkMath.min(j, n - 1); k++) {
- z += matrixP[i][k] * matrixT[k][j];
- }
- matrixP[i][j] = z;
- }
- }
- eigenvectors = new ArrayRealVector[n];
- final double[] tmp = new double[n];
- for (int i = 0; i < n; i++) {
- for (int j = 0; j < n; j++) {
- tmp[j] = matrixP[j][i];
- }
- eigenvectors[i] = new ArrayRealVector(tmp);
- }
- }
- }