SumOfClusterVariances.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math4.legacy.ml.clustering.evaluation;
- import java.util.List;
- import org.apache.commons.math4.legacy.ml.clustering.Cluster;
- import org.apache.commons.math4.legacy.ml.clustering.Clusterable;
- import org.apache.commons.math4.legacy.ml.clustering.ClusterEvaluator;
- import org.apache.commons.math4.legacy.ml.distance.DistanceMeasure;
- import org.apache.commons.math4.legacy.stat.descriptive.moment.Variance;
- /**
- * Computes the sum of intra-cluster distance variances according to the formula:
- * <pre>
- * \( score = \sum\limits_{i=1}^n \sigma_i^2 \)
- * </pre>
- * where n is the number of clusters and \( \sigma_i^2 \) is the variance of
- * intra-cluster distances of cluster \( c_i \).
- *
- * @since 3.3
- */
- public class SumOfClusterVariances implements ClusterEvaluator {
- /** The distance measure to use when evaluating the cluster. */
- private final DistanceMeasure measure;
- /**
- * @param measure Distance measure.
- */
- public SumOfClusterVariances(final DistanceMeasure measure) {
- this.measure = measure;
- }
- /** {@inheritDoc} */
- @Override
- public double score(List<? extends Cluster<? extends Clusterable>> clusters) {
- double varianceSum = 0.0;
- for (final Cluster<? extends Clusterable> cluster : clusters) {
- if (!cluster.getPoints().isEmpty()) {
- final Clusterable center = cluster.centroid();
- // compute the distance variance of the current cluster
- final Variance stat = new Variance();
- for (final Clusterable point : cluster.getPoints()) {
- stat.increment(distance(point, center));
- }
- varianceSum += stat.getResult();
- }
- }
- return varianceSum;
- }
- /** {@inheritDoc} */
- @Override
- public boolean isBetterScore(double a,
- double b) {
- return a < b;
- }
- /**
- * Calculates the distance between two {@link Clusterable} instances
- * with the configured {@link DistanceMeasure}.
- *
- * @param p1 the first clusterable
- * @param p2 the second clusterable
- * @return the distance between the two clusterables
- */
- private double distance(final Clusterable p1, final Clusterable p2) {
- return measure.compute(p1.getPoint(), p2.getPoint());
- }
- }