AdamsBashforthIntegrator.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math4.legacy.ode.nonstiff;
- import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
- import org.apache.commons.math4.legacy.exception.MaxCountExceededException;
- import org.apache.commons.math4.legacy.exception.NoBracketingException;
- import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
- import org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix;
- import org.apache.commons.math4.legacy.linear.RealMatrix;
- import org.apache.commons.math4.legacy.ode.EquationsMapper;
- import org.apache.commons.math4.legacy.ode.ExpandableStatefulODE;
- import org.apache.commons.math4.legacy.ode.sampling.NordsieckStepInterpolator;
- import org.apache.commons.math4.core.jdkmath.JdkMath;
- /**
- * This class implements explicit Adams-Bashforth integrators for Ordinary
- * Differential Equations.
- *
- * <p>Adams-Bashforth methods (in fact due to Adams alone) are explicit
- * multistep ODE solvers. This implementation is a variation of the classical
- * one: it uses adaptive stepsize to implement error control, whereas
- * classical implementations are fixed step size. The value of state vector
- * at step n+1 is a simple combination of the value at step n and of the
- * derivatives at steps n, n-1, n-2 ... Depending on the number k of previous
- * steps one wants to use for computing the next value, different formulas
- * are available:</p>
- * <ul>
- * <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + h y'<sub>n</sub></li>
- * <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + h (3y'<sub>n</sub>-y'<sub>n-1</sub>)/2</li>
- * <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + h (23y'<sub>n</sub>-16y'<sub>n-1</sub>+5y'<sub>n-2</sub>)/12</li>
- * <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + h (55y'<sub>n</sub>-59y'<sub>n-1</sub>+37y'<sub>n-2</sub>-9y'<sub>n-3</sub>)/24</li>
- * <li>...</li>
- * </ul>
- *
- * <p>A k-steps Adams-Bashforth method is of order k.</p>
- *
- * <p><b>Implementation details</b></p>
- *
- * <p>We define scaled derivatives s<sub>i</sub>(n) at step n as:
- * <div style="white-space: pre"><code>
- * s<sub>1</sub>(n) = h y'<sub>n</sub> for first derivative
- * s<sub>2</sub>(n) = h<sup>2</sup>/2 y''<sub>n</sub> for second derivative
- * s<sub>3</sub>(n) = h<sup>3</sup>/6 y'''<sub>n</sub> for third derivative
- * ...
- * s<sub>k</sub>(n) = h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub> for k<sup>th</sup> derivative
- * </code></div>
- *
- * <p>The definitions above use the classical representation with several previous first
- * derivatives. Lets define
- * <div style="white-space: pre"><code>
- * q<sub>n</sub> = [ s<sub>1</sub>(n-1) s<sub>1</sub>(n-2) ... s<sub>1</sub>(n-(k-1)) ]<sup>T</sup>
- * </code></div>
- * (we omit the k index in the notation for clarity). With these definitions,
- * Adams-Bashforth methods can be written:
- * <ul>
- * <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n)</li>
- * <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + 3/2 s<sub>1</sub>(n) + [ -1/2 ] q<sub>n</sub></li>
- * <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + 23/12 s<sub>1</sub>(n) + [ -16/12 5/12 ] q<sub>n</sub></li>
- * <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + 55/24 s<sub>1</sub>(n) + [ -59/24 37/24 -9/24 ] q<sub>n</sub></li>
- * <li>...</li>
- * </ul>
- *
- * <p>Instead of using the classical representation with first derivatives only (y<sub>n</sub>,
- * s<sub>1</sub>(n) and q<sub>n</sub>), our implementation uses the Nordsieck vector with
- * higher degrees scaled derivatives all taken at the same step (y<sub>n</sub>, s<sub>1</sub>(n)
- * and r<sub>n</sub>) where r<sub>n</sub> is defined as:
- * <div style="white-space: pre"><code>
- * r<sub>n</sub> = [ s<sub>2</sub>(n), s<sub>3</sub>(n) ... s<sub>k</sub>(n) ]<sup>T</sup>
- * </code></div>
- * (here again we omit the k index in the notation for clarity)
- *
- * <p>Taylor series formulas show that for any index offset i, s<sub>1</sub>(n-i) can be
- * computed from s<sub>1</sub>(n), s<sub>2</sub>(n) ... s<sub>k</sub>(n), the formula being exact
- * for degree k polynomials.
- * <div style="white-space: pre"><code>
- * s<sub>1</sub>(n-i) = s<sub>1</sub>(n) + ∑<sub>j>0</sub> (j+1) (-i)<sup>j</sup> s<sub>j+1</sub>(n)
- * </code></div>
- * The previous formula can be used with several values for i to compute the transform between
- * classical representation and Nordsieck vector. The transform between r<sub>n</sub>
- * and q<sub>n</sub> resulting from the Taylor series formulas above is:
- * <div style="white-space: pre"><code>
- * q<sub>n</sub> = s<sub>1</sub>(n) u + P r<sub>n</sub>
- * </code></div>
- * where u is the [ 1 1 ... 1 ]<sup>T</sup> vector and P is the (k-1)×(k-1) matrix built
- * with the (j+1) (-i)<sup>j</sup> terms with i being the row number starting from 1 and j being
- * the column number starting from 1:
- * <pre>
- * [ -2 3 -4 5 ... ]
- * [ -4 12 -32 80 ... ]
- * P = [ -6 27 -108 405 ... ]
- * [ -8 48 -256 1280 ... ]
- * [ ... ]
- * </pre>
- *
- * <p>Using the Nordsieck vector has several advantages:
- * <ul>
- * <li>it greatly simplifies step interpolation as the interpolator mainly applies
- * Taylor series formulas,</li>
- * <li>it simplifies step changes that occur when discrete events that truncate
- * the step are triggered,</li>
- * <li>it allows to extend the methods in order to support adaptive stepsize.</li>
- * </ul>
- *
- * <p>The Nordsieck vector at step n+1 is computed from the Nordsieck vector at step n as follows:
- * <ul>
- * <li>y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li>
- * <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li>
- * <li>r<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li>
- * </ul>
- * where A is a rows shifting matrix (the lower left part is an identity matrix):
- * <pre>
- * [ 0 0 ... 0 0 | 0 ]
- * [ ---------------+---]
- * [ 1 0 ... 0 0 | 0 ]
- * A = [ 0 1 ... 0 0 | 0 ]
- * [ ... | 0 ]
- * [ 0 0 ... 1 0 | 0 ]
- * [ 0 0 ... 0 1 | 0 ]
- * </pre>
- *
- * <p>The P<sup>-1</sup>u vector and the P<sup>-1</sup> A P matrix do not depend on the state,
- * they only depend on k and therefore are precomputed once for all.</p>
- *
- * @since 2.0
- */
- public class AdamsBashforthIntegrator extends AdamsIntegrator {
- /** Integrator method name. */
- private static final String METHOD_NAME = "Adams-Bashforth";
- /**
- * Build an Adams-Bashforth integrator with the given order and step control parameters.
- * @param nSteps number of steps of the method excluding the one being computed
- * @param minStep minimal step (sign is irrelevant, regardless of
- * integration direction, forward or backward), the last step can
- * be smaller than this
- * @param maxStep maximal step (sign is irrelevant, regardless of
- * integration direction, forward or backward), the last step can
- * be smaller than this
- * @param scalAbsoluteTolerance allowed absolute error
- * @param scalRelativeTolerance allowed relative error
- * @exception NumberIsTooSmallException if order is 1 or less
- */
- public AdamsBashforthIntegrator(final int nSteps,
- final double minStep, final double maxStep,
- final double scalAbsoluteTolerance,
- final double scalRelativeTolerance)
- throws NumberIsTooSmallException {
- super(METHOD_NAME, nSteps, nSteps, minStep, maxStep,
- scalAbsoluteTolerance, scalRelativeTolerance);
- }
- /**
- * Build an Adams-Bashforth integrator with the given order and step control parameters.
- * @param nSteps number of steps of the method excluding the one being computed
- * @param minStep minimal step (sign is irrelevant, regardless of
- * integration direction, forward or backward), the last step can
- * be smaller than this
- * @param maxStep maximal step (sign is irrelevant, regardless of
- * integration direction, forward or backward), the last step can
- * be smaller than this
- * @param vecAbsoluteTolerance allowed absolute error
- * @param vecRelativeTolerance allowed relative error
- * @exception IllegalArgumentException if order is 1 or less
- */
- public AdamsBashforthIntegrator(final int nSteps,
- final double minStep, final double maxStep,
- final double[] vecAbsoluteTolerance,
- final double[] vecRelativeTolerance)
- throws IllegalArgumentException {
- super(METHOD_NAME, nSteps, nSteps, minStep, maxStep,
- vecAbsoluteTolerance, vecRelativeTolerance);
- }
- /** Estimate error.
- * <p>
- * Error is estimated by interpolating back to previous state using
- * the state Taylor expansion and comparing to real previous state.
- * </p>
- * @param previousState state vector at step start
- * @param predictedState predicted state vector at step end
- * @param predictedScaled predicted value of the scaled derivatives at step end
- * @param predictedNordsieck predicted value of the Nordsieck vector at step end
- * @return estimated normalized local discretization error
- */
- private double errorEstimation(final double[] previousState,
- final double[] predictedState,
- final double[] predictedScaled,
- final RealMatrix predictedNordsieck) {
- double error = 0;
- for (int i = 0; i < mainSetDimension; ++i) {
- final double yScale = JdkMath.abs(predictedState[i]);
- final double tol = (vecAbsoluteTolerance == null) ?
- (scalAbsoluteTolerance + scalRelativeTolerance * yScale) :
- (vecAbsoluteTolerance[i] + vecRelativeTolerance[i] * yScale);
- // apply Taylor formula from high order to low order,
- // for the sake of numerical accuracy
- double variation = 0;
- int sign = (predictedNordsieck.getRowDimension() & 1) == 0 ? -1 : 1;
- for (int k = predictedNordsieck.getRowDimension() - 1; k >= 0; --k) {
- variation += sign * predictedNordsieck.getEntry(k, i);
- sign = -sign;
- }
- variation -= predictedScaled[i];
- final double ratio = (predictedState[i] - previousState[i] + variation) / tol;
- error += ratio * ratio;
- }
- return JdkMath.sqrt(error / mainSetDimension);
- }
- /** {@inheritDoc} */
- @Override
- public void integrate(final ExpandableStatefulODE equations, final double t)
- throws NumberIsTooSmallException, DimensionMismatchException,
- MaxCountExceededException, NoBracketingException {
- sanityChecks(equations, t);
- setEquations(equations);
- final boolean forward = t > equations.getTime();
- // initialize working arrays
- final double[] y = equations.getCompleteState();
- final double[] yDot = new double[y.length];
- // set up an interpolator sharing the integrator arrays
- final NordsieckStepInterpolator interpolator = new NordsieckStepInterpolator();
- interpolator.reinitialize(y, forward,
- equations.getPrimaryMapper(), equations.getSecondaryMappers());
- // set up integration control objects
- initIntegration(equations.getTime(), y, t);
- // compute the initial Nordsieck vector using the configured starter integrator
- start(equations.getTime(), y, t);
- interpolator.reinitialize(stepStart, stepSize, scaled, nordsieck);
- interpolator.storeTime(stepStart);
- // reuse the step that was chosen by the starter integrator
- double hNew = stepSize;
- interpolator.rescale(hNew);
- // main integration loop
- isLastStep = false;
- do {
- interpolator.shift();
- final double[] predictedY = new double[y.length];
- final double[] predictedScaled = new double[y.length];
- Array2DRowRealMatrix predictedNordsieck = null;
- double error = 10;
- while (error >= 1.0) {
- // predict a first estimate of the state at step end
- final double stepEnd = stepStart + hNew;
- interpolator.storeTime(stepEnd);
- final ExpandableStatefulODE expandable = getExpandable();
- final EquationsMapper primary = expandable.getPrimaryMapper();
- primary.insertEquationData(interpolator.getInterpolatedState(), predictedY);
- int index = 0;
- for (final EquationsMapper secondary : expandable.getSecondaryMappers()) {
- secondary.insertEquationData(interpolator.getInterpolatedSecondaryState(index), predictedY);
- ++index;
- }
- // evaluate the derivative
- computeDerivatives(stepEnd, predictedY, yDot);
- // predict Nordsieck vector at step end
- for (int j = 0; j < predictedScaled.length; ++j) {
- predictedScaled[j] = hNew * yDot[j];
- }
- predictedNordsieck = updateHighOrderDerivativesPhase1(nordsieck);
- updateHighOrderDerivativesPhase2(scaled, predictedScaled, predictedNordsieck);
- // evaluate error
- error = errorEstimation(y, predictedY, predictedScaled, predictedNordsieck);
- if (error >= 1.0) {
- // reject the step and attempt to reduce error by stepsize control
- final double factor = computeStepGrowShrinkFactor(error);
- hNew = filterStep(hNew * factor, forward, false);
- interpolator.rescale(hNew);
- }
- }
- stepSize = hNew;
- final double stepEnd = stepStart + stepSize;
- interpolator.reinitialize(stepEnd, stepSize, predictedScaled, predictedNordsieck);
- // discrete events handling
- interpolator.storeTime(stepEnd);
- System.arraycopy(predictedY, 0, y, 0, y.length);
- stepStart = acceptStep(interpolator, y, yDot, t);
- scaled = predictedScaled;
- nordsieck = predictedNordsieck;
- interpolator.reinitialize(stepEnd, stepSize, scaled, nordsieck);
- if (!isLastStep) {
- // prepare next step
- interpolator.storeTime(stepStart);
- if (resetOccurred) {
- // some events handler has triggered changes that
- // invalidate the derivatives, we need to restart from scratch
- start(stepStart, y, t);
- interpolator.reinitialize(stepStart, stepSize, scaled, nordsieck);
- }
- // stepsize control for next step
- final double factor = computeStepGrowShrinkFactor(error);
- final double scaledH = stepSize * factor;
- final double nextT = stepStart + scaledH;
- final boolean nextIsLast = forward ? (nextT >= t) : (nextT <= t);
- hNew = filterStep(scaledH, forward, nextIsLast);
- final double filteredNextT = stepStart + hNew;
- final boolean filteredNextIsLast = forward ? (filteredNextT >= t) : (filteredNextT <= t);
- if (filteredNextIsLast) {
- hNew = t - stepStart;
- }
- interpolator.rescale(hNew);
- }
- } while (!isLastStep);
- // dispatch results
- equations.setTime(stepStart);
- equations.setCompleteState(y);
- resetInternalState();
- }
- }