AdaptiveStepsizeFieldIntegrator.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math4.legacy.ode.nonstiff;
- import org.apache.commons.math4.legacy.core.Field;
- import org.apache.commons.math4.legacy.core.RealFieldElement;
- import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
- import org.apache.commons.math4.legacy.exception.MaxCountExceededException;
- import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
- import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
- import org.apache.commons.math4.legacy.ode.AbstractFieldIntegrator;
- import org.apache.commons.math4.legacy.ode.FieldEquationsMapper;
- import org.apache.commons.math4.legacy.ode.FieldODEState;
- import org.apache.commons.math4.legacy.ode.FieldODEStateAndDerivative;
- import org.apache.commons.math4.core.jdkmath.JdkMath;
- import org.apache.commons.math4.legacy.core.MathArrays;
- /**
- * This abstract class holds the common part of all adaptive
- * stepsize integrators for Ordinary Differential Equations.
- *
- * <p>These algorithms perform integration with stepsize control, which
- * means the user does not specify the integration step but rather a
- * tolerance on error. The error threshold is computed as
- * <pre>
- * threshold_i = absTol_i + relTol_i * max (abs (ym), abs (ym+1))
- * </pre>
- * where absTol_i is the absolute tolerance for component i of the
- * state vector and relTol_i is the relative tolerance for the same
- * component. The user can also use only two scalar values absTol and
- * relTol which will be used for all components.
- *
- * <p>
- * Note that <em>only</em> the {@link FieldODEState#getState() main part}
- * of the state vector is used for stepsize control. The {@link
- * FieldODEState#getSecondaryState(int) secondary parts} of the state
- * vector are explicitly ignored for stepsize control.
- * </p>
- *
- * <p>If the estimated error for ym+1 is such that
- * <pre>
- * sqrt((sum (errEst_i / threshold_i)^2 ) / n) < 1
- * </pre>
- *
- * (where n is the main set dimension) then the step is accepted,
- * otherwise the step is rejected and a new attempt is made with a new
- * stepsize.
- *
- * @param <T> the type of the field elements
- * @since 3.6
- *
- */
- public abstract class AdaptiveStepsizeFieldIntegrator<T extends RealFieldElement<T>>
- extends AbstractFieldIntegrator<T> {
- /** Allowed absolute scalar error. */
- protected double scalAbsoluteTolerance;
- /** Allowed relative scalar error. */
- protected double scalRelativeTolerance;
- /** Allowed absolute vectorial error. */
- protected double[] vecAbsoluteTolerance;
- /** Allowed relative vectorial error. */
- protected double[] vecRelativeTolerance;
- /** Main set dimension. */
- protected int mainSetDimension;
- /** User supplied initial step. */
- private T initialStep;
- /** Minimal step. */
- private T minStep;
- /** Maximal step. */
- private T maxStep;
- /** Build an integrator with the given stepsize bounds.
- * The default step handler does nothing.
- * @param field field to which the time and state vector elements belong
- * @param name name of the method
- * @param minStep minimal step (sign is irrelevant, regardless of
- * integration direction, forward or backward), the last step can
- * be smaller than this
- * @param maxStep maximal step (sign is irrelevant, regardless of
- * integration direction, forward or backward), the last step can
- * be smaller than this
- * @param scalAbsoluteTolerance allowed absolute error
- * @param scalRelativeTolerance allowed relative error
- */
- public AdaptiveStepsizeFieldIntegrator(final Field<T> field, final String name,
- final double minStep, final double maxStep,
- final double scalAbsoluteTolerance,
- final double scalRelativeTolerance) {
- super(field, name);
- setStepSizeControl(minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);
- resetInternalState();
- }
- /** Build an integrator with the given stepsize bounds.
- * The default step handler does nothing.
- * @param field field to which the time and state vector elements belong
- * @param name name of the method
- * @param minStep minimal step (sign is irrelevant, regardless of
- * integration direction, forward or backward), the last step can
- * be smaller than this
- * @param maxStep maximal step (sign is irrelevant, regardless of
- * integration direction, forward or backward), the last step can
- * be smaller than this
- * @param vecAbsoluteTolerance allowed absolute error
- * @param vecRelativeTolerance allowed relative error
- */
- public AdaptiveStepsizeFieldIntegrator(final Field<T> field, final String name,
- final double minStep, final double maxStep,
- final double[] vecAbsoluteTolerance,
- final double[] vecRelativeTolerance) {
- super(field, name);
- setStepSizeControl(minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
- resetInternalState();
- }
- /** Set the adaptive step size control parameters.
- * <p>
- * A side effect of this method is to also reset the initial
- * step so it will be automatically computed by the integrator
- * if {@link #setInitialStepSize(RealFieldElement) setInitialStepSize}
- * is not called by the user.
- * </p>
- * @param minimalStep minimal step (must be positive even for backward
- * integration), the last step can be smaller than this
- * @param maximalStep maximal step (must be positive even for backward
- * integration)
- * @param absoluteTolerance allowed absolute error
- * @param relativeTolerance allowed relative error
- */
- public void setStepSizeControl(final double minimalStep, final double maximalStep,
- final double absoluteTolerance,
- final double relativeTolerance) {
- minStep = getField().getZero().add(JdkMath.abs(minimalStep));
- maxStep = getField().getZero().add(JdkMath.abs(maximalStep));
- initialStep = getField().getOne().negate();
- scalAbsoluteTolerance = absoluteTolerance;
- scalRelativeTolerance = relativeTolerance;
- vecAbsoluteTolerance = null;
- vecRelativeTolerance = null;
- }
- /** Set the adaptive step size control parameters.
- * <p>
- * A side effect of this method is to also reset the initial
- * step so it will be automatically computed by the integrator
- * if {@link #setInitialStepSize(RealFieldElement) setInitialStepSize}
- * is not called by the user.
- * </p>
- * @param minimalStep minimal step (must be positive even for backward
- * integration), the last step can be smaller than this
- * @param maximalStep maximal step (must be positive even for backward
- * integration)
- * @param absoluteTolerance allowed absolute error
- * @param relativeTolerance allowed relative error
- */
- public void setStepSizeControl(final double minimalStep, final double maximalStep,
- final double[] absoluteTolerance,
- final double[] relativeTolerance) {
- minStep = getField().getZero().add(JdkMath.abs(minimalStep));
- maxStep = getField().getZero().add(JdkMath.abs(maximalStep));
- initialStep = getField().getOne().negate();
- scalAbsoluteTolerance = 0;
- scalRelativeTolerance = 0;
- vecAbsoluteTolerance = absoluteTolerance.clone();
- vecRelativeTolerance = relativeTolerance.clone();
- }
- /** Set the initial step size.
- * <p>This method allows the user to specify an initial positive
- * step size instead of letting the integrator guess it by
- * itself. If this method is not called before integration is
- * started, the initial step size will be estimated by the
- * integrator.</p>
- * @param initialStepSize initial step size to use (must be positive even
- * for backward integration ; providing a negative value or a value
- * outside of the min/max step interval will lead the integrator to
- * ignore the value and compute the initial step size by itself)
- */
- public void setInitialStepSize(final T initialStepSize) {
- if (initialStepSize.subtract(minStep).getReal() < 0 ||
- initialStepSize.subtract(maxStep).getReal() > 0) {
- initialStep = getField().getOne().negate();
- } else {
- initialStep = initialStepSize;
- }
- }
- /** {@inheritDoc} */
- @Override
- protected void sanityChecks(final FieldODEState<T> eqn, final T t)
- throws DimensionMismatchException, NumberIsTooSmallException {
- super.sanityChecks(eqn, t);
- mainSetDimension = eqn.getStateDimension();
- if (vecAbsoluteTolerance != null && vecAbsoluteTolerance.length != mainSetDimension) {
- throw new DimensionMismatchException(mainSetDimension, vecAbsoluteTolerance.length);
- }
- if (vecRelativeTolerance != null && vecRelativeTolerance.length != mainSetDimension) {
- throw new DimensionMismatchException(mainSetDimension, vecRelativeTolerance.length);
- }
- }
- /** Initialize the integration step.
- * @param forward forward integration indicator
- * @param order order of the method
- * @param scale scaling vector for the state vector (can be shorter than state vector)
- * @param state0 state at integration start time
- * @param mapper mapper for all the equations
- * @return first integration step
- * @exception MaxCountExceededException if the number of functions evaluations is exceeded
- * @exception DimensionMismatchException if arrays dimensions do not match equations settings
- */
- public T initializeStep(final boolean forward, final int order, final T[] scale,
- final FieldODEStateAndDerivative<T> state0,
- final FieldEquationsMapper<T> mapper)
- throws MaxCountExceededException, DimensionMismatchException {
- if (initialStep.getReal() > 0) {
- // use the user provided value
- return forward ? initialStep : initialStep.negate();
- }
- // very rough first guess : h = 0.01 * ||y/scale|| / ||y'/scale||
- // this guess will be used to perform an Euler step
- final T[] y0 = mapper.mapState(state0);
- final T[] yDot0 = mapper.mapDerivative(state0);
- T yOnScale2 = getField().getZero();
- T yDotOnScale2 = getField().getZero();
- for (int j = 0; j < scale.length; ++j) {
- final T ratio = y0[j].divide(scale[j]);
- yOnScale2 = yOnScale2.add(ratio.multiply(ratio));
- final T ratioDot = yDot0[j].divide(scale[j]);
- yDotOnScale2 = yDotOnScale2.add(ratioDot.multiply(ratioDot));
- }
- T h = (yOnScale2.getReal() < 1.0e-10 || yDotOnScale2.getReal() < 1.0e-10) ?
- getField().getZero().add(1.0e-6) :
- yOnScale2.divide(yDotOnScale2).sqrt().multiply(0.01);
- if (! forward) {
- h = h.negate();
- }
- // perform an Euler step using the preceding rough guess
- final T[] y1 = MathArrays.buildArray(getField(), y0.length);
- for (int j = 0; j < y0.length; ++j) {
- y1[j] = y0[j].add(yDot0[j].multiply(h));
- }
- final T[] yDot1 = computeDerivatives(state0.getTime().add(h), y1);
- // estimate the second derivative of the solution
- T yDDotOnScale = getField().getZero();
- for (int j = 0; j < scale.length; ++j) {
- final T ratioDotDot = yDot1[j].subtract(yDot0[j]).divide(scale[j]);
- yDDotOnScale = yDDotOnScale.add(ratioDotDot.multiply(ratioDotDot));
- }
- yDDotOnScale = yDDotOnScale.sqrt().divide(h);
- // step size is computed such that
- // h^order * max (||y'/tol||, ||y''/tol||) = 0.01
- final T maxInv2 = RealFieldElement.max(yDotOnScale2.sqrt(), yDDotOnScale);
- final T h1 = maxInv2.getReal() < 1.0e-15 ?
- RealFieldElement.max(getField().getZero().add(1.0e-6), h.abs().multiply(0.001)) :
- maxInv2.multiply(100).reciprocal().pow(1.0 / order);
- h = RealFieldElement.min(h.abs().multiply(100), h1);
- h = RealFieldElement.max(h, state0.getTime().abs().multiply(1.0e-12)); // avoids cancellation when computing t1 - t0
- h = RealFieldElement.max(minStep, RealFieldElement.min(maxStep, h));
- if (! forward) {
- h = h.negate();
- }
- return h;
- }
- /** Filter the integration step.
- * @param h signed step
- * @param forward forward integration indicator
- * @param acceptSmall if true, steps smaller than the minimal value
- * are silently increased up to this value, if false such small
- * steps generate an exception
- * @return a bounded integration step (h if no bound is reach, or a bounded value)
- * @exception NumberIsTooSmallException if the step is too small and acceptSmall is false
- */
- protected T filterStep(final T h, final boolean forward, final boolean acceptSmall)
- throws NumberIsTooSmallException {
- T filteredH = h;
- if (h.abs().subtract(minStep).getReal() < 0) {
- if (acceptSmall) {
- filteredH = forward ? minStep : minStep.negate();
- } else {
- throw new NumberIsTooSmallException(LocalizedFormats.MINIMAL_STEPSIZE_REACHED_DURING_INTEGRATION,
- h.abs().getReal(), minStep.getReal(), true);
- }
- }
- if (filteredH.subtract(maxStep).getReal() > 0) {
- filteredH = maxStep;
- } else if (filteredH.add(maxStep).getReal() < 0) {
- filteredH = maxStep.negate();
- }
- return filteredH;
- }
- /** Reset internal state to dummy values. */
- protected void resetInternalState() {
- setStepStart(null);
- setStepSize(minStep.multiply(maxStep).sqrt());
- }
- /** Get the minimal step.
- * @return minimal step
- */
- public T getMinStep() {
- return minStep;
- }
- /** Get the maximal step.
- * @return maximal step
- */
- public T getMaxStep() {
- return maxStep;
- }
- }