DormandPrince54Integrator.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math4.legacy.ode.nonstiff;
- import org.apache.commons.math4.core.jdkmath.JdkMath;
- /**
- * This class implements the 5(4) Dormand-Prince integrator for Ordinary
- * Differential Equations.
- * <p>This integrator is an embedded Runge-Kutta integrator
- * of order 5(4) used in local extrapolation mode (i.e. the solution
- * is computed using the high order formula) with stepsize control
- * (and automatic step initialization) and continuous output. This
- * method uses 7 functions evaluations per step. However, since this
- * is an <i>fsal</i>, the last evaluation of one step is the same as
- * the first evaluation of the next step and hence can be avoided. So
- * the cost is really 6 functions evaluations per step.</p>
- *
- * <p>This method has been published (whithout the continuous output
- * that was added by Shampine in 1986) in the following article :
- * <pre>
- * A family of embedded Runge-Kutta formulae
- * J. R. Dormand and P. J. Prince
- * Journal of Computational and Applied Mathematics
- * volume 6, no 1, 1980, pp. 19-26
- * </pre>
- *
- * @since 1.2
- */
- public class DormandPrince54Integrator extends EmbeddedRungeKuttaIntegrator {
- /** Integrator method name. */
- private static final String METHOD_NAME = "Dormand-Prince 5(4)";
- /** Time steps Butcher array. */
- private static final double[] STATIC_C = {
- 1.0/5.0, 3.0/10.0, 4.0/5.0, 8.0/9.0, 1.0, 1.0
- };
- /** Internal weights Butcher array. */
- private static final double[][] STATIC_A = {
- {1.0/5.0},
- {3.0/40.0, 9.0/40.0},
- {44.0/45.0, -56.0/15.0, 32.0/9.0},
- {19372.0/6561.0, -25360.0/2187.0, 64448.0/6561.0, -212.0/729.0},
- {9017.0/3168.0, -355.0/33.0, 46732.0/5247.0, 49.0/176.0, -5103.0/18656.0},
- {35.0/384.0, 0.0, 500.0/1113.0, 125.0/192.0, -2187.0/6784.0, 11.0/84.0}
- };
- /** Propagation weights Butcher array. */
- private static final double[] STATIC_B = {
- 35.0/384.0, 0.0, 500.0/1113.0, 125.0/192.0, -2187.0/6784.0, 11.0/84.0, 0.0
- };
- /** Error array, element 1. */
- private static final double E1 = 71.0 / 57600.0;
- // element 2 is zero, so it is neither stored nor used
- /** Error array, element 3. */
- private static final double E3 = -71.0 / 16695.0;
- /** Error array, element 4. */
- private static final double E4 = 71.0 / 1920.0;
- /** Error array, element 5. */
- private static final double E5 = -17253.0 / 339200.0;
- /** Error array, element 6. */
- private static final double E6 = 22.0 / 525.0;
- /** Error array, element 7. */
- private static final double E7 = -1.0 / 40.0;
- /** Simple constructor.
- * Build a fifth order Dormand-Prince integrator with the given step bounds
- * @param minStep minimal step (sign is irrelevant, regardless of
- * integration direction, forward or backward), the last step can
- * be smaller than this
- * @param maxStep maximal step (sign is irrelevant, regardless of
- * integration direction, forward or backward), the last step can
- * be smaller than this
- * @param scalAbsoluteTolerance allowed absolute error
- * @param scalRelativeTolerance allowed relative error
- */
- public DormandPrince54Integrator(final double minStep, final double maxStep,
- final double scalAbsoluteTolerance,
- final double scalRelativeTolerance) {
- super(METHOD_NAME, true, STATIC_C, STATIC_A, STATIC_B, new DormandPrince54StepInterpolator(),
- minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);
- }
- /** Simple constructor.
- * Build a fifth order Dormand-Prince integrator with the given step bounds
- * @param minStep minimal step (sign is irrelevant, regardless of
- * integration direction, forward or backward), the last step can
- * be smaller than this
- * @param maxStep maximal step (sign is irrelevant, regardless of
- * integration direction, forward or backward), the last step can
- * be smaller than this
- * @param vecAbsoluteTolerance allowed absolute error
- * @param vecRelativeTolerance allowed relative error
- */
- public DormandPrince54Integrator(final double minStep, final double maxStep,
- final double[] vecAbsoluteTolerance,
- final double[] vecRelativeTolerance) {
- super(METHOD_NAME, true, STATIC_C, STATIC_A, STATIC_B, new DormandPrince54StepInterpolator(),
- minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
- }
- /** {@inheritDoc} */
- @Override
- public int getOrder() {
- return 5;
- }
- /** {@inheritDoc} */
- @Override
- protected double estimateError(final double[][] yDotK,
- final double[] y0, final double[] y1,
- final double h) {
- double error = 0;
- for (int j = 0; j < mainSetDimension; ++j) {
- final double errSum = E1 * yDotK[0][j] + E3 * yDotK[2][j] +
- E4 * yDotK[3][j] + E5 * yDotK[4][j] +
- E6 * yDotK[5][j] + E7 * yDotK[6][j];
- final double yScale = JdkMath.max(JdkMath.abs(y0[j]), JdkMath.abs(y1[j]));
- final double tol = (vecAbsoluteTolerance == null) ?
- (scalAbsoluteTolerance + scalRelativeTolerance * yScale) :
- (vecAbsoluteTolerance[j] + vecRelativeTolerance[j] * yScale);
- final double ratio = h * errSum / tol;
- error += ratio * ratio;
- }
- return JdkMath.sqrt(error / mainSetDimension);
- }
- }