EmbeddedRungeKuttaIntegrator.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math4.legacy.ode.nonstiff;
- import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
- import org.apache.commons.math4.legacy.exception.MaxCountExceededException;
- import org.apache.commons.math4.legacy.exception.NoBracketingException;
- import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
- import org.apache.commons.math4.legacy.ode.ExpandableStatefulODE;
- import org.apache.commons.math4.core.jdkmath.JdkMath;
- /**
- * This class implements the common part of all embedded Runge-Kutta
- * integrators for Ordinary Differential Equations.
- *
- * <p>These methods are embedded explicit Runge-Kutta methods with two
- * sets of coefficients allowing to estimate the error, their Butcher
- * arrays are as follows :
- * <pre>
- * 0 |
- * c2 | a21
- * c3 | a31 a32
- * ... | ...
- * cs | as1 as2 ... ass-1
- * |--------------------------
- * | b1 b2 ... bs-1 bs
- * | b'1 b'2 ... b's-1 b's
- * </pre>
- *
- * <p>In fact, we rather use the array defined by ej = bj - b'j to
- * compute directly the error rather than computing two estimates and
- * then comparing them.</p>
- *
- * <p>Some methods are qualified as <i>fsal</i> (first same as last)
- * methods. This means the last evaluation of the derivatives in one
- * step is the same as the first in the next step. Then, this
- * evaluation can be reused from one step to the next one and the cost
- * of such a method is really s-1 evaluations despite the method still
- * has s stages. This behaviour is true only for successful steps, if
- * the step is rejected after the error estimation phase, no
- * evaluation is saved. For an <i>fsal</i> method, we have cs = 1 and
- * asi = bi for all i.</p>
- *
- * @since 1.2
- */
- public abstract class EmbeddedRungeKuttaIntegrator
- extends AdaptiveStepsizeIntegrator {
- /** Indicator for <i>fsal</i> methods. */
- private final boolean fsal;
- /** Time steps from Butcher array (without the first zero). */
- private final double[] c;
- /** Internal weights from Butcher array (without the first empty row). */
- private final double[][] a;
- /** External weights for the high order method from Butcher array. */
- private final double[] b;
- /** Prototype of the step interpolator. */
- private final RungeKuttaStepInterpolator prototype;
- /** Stepsize control exponent. */
- private final double exp;
- /** Safety factor for stepsize control. */
- private double safety;
- /** Minimal reduction factor for stepsize control. */
- private double minReduction;
- /** Maximal growth factor for stepsize control. */
- private double maxGrowth;
- /** Build a Runge-Kutta integrator with the given Butcher array.
- * @param name name of the method
- * @param fsal indicate that the method is an <i>fsal</i>
- * @param c time steps from Butcher array (without the first zero)
- * @param a internal weights from Butcher array (without the first empty row)
- * @param b propagation weights for the high order method from Butcher array
- * @param prototype prototype of the step interpolator to use
- * @param minStep minimal step (sign is irrelevant, regardless of
- * integration direction, forward or backward), the last step can
- * be smaller than this
- * @param maxStep maximal step (sign is irrelevant, regardless of
- * integration direction, forward or backward), the last step can
- * be smaller than this
- * @param scalAbsoluteTolerance allowed absolute error
- * @param scalRelativeTolerance allowed relative error
- */
- protected EmbeddedRungeKuttaIntegrator(final String name, final boolean fsal,
- final double[] c, final double[][] a, final double[] b,
- final RungeKuttaStepInterpolator prototype,
- final double minStep, final double maxStep,
- final double scalAbsoluteTolerance,
- final double scalRelativeTolerance) {
- super(name, minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);
- this.fsal = fsal;
- this.c = c;
- this.a = a;
- this.b = b;
- this.prototype = prototype;
- exp = -1.0 / getOrder();
- // set the default values of the algorithm control parameters
- setSafety(0.9);
- setMinReduction(0.2);
- setMaxGrowth(10.0);
- }
- /** Build a Runge-Kutta integrator with the given Butcher array.
- * @param name name of the method
- * @param fsal indicate that the method is an <i>fsal</i>
- * @param c time steps from Butcher array (without the first zero)
- * @param a internal weights from Butcher array (without the first empty row)
- * @param b propagation weights for the high order method from Butcher array
- * @param prototype prototype of the step interpolator to use
- * @param minStep minimal step (must be positive even for backward
- * integration), the last step can be smaller than this
- * @param maxStep maximal step (must be positive even for backward
- * integration)
- * @param vecAbsoluteTolerance allowed absolute error
- * @param vecRelativeTolerance allowed relative error
- */
- protected EmbeddedRungeKuttaIntegrator(final String name, final boolean fsal,
- final double[] c, final double[][] a, final double[] b,
- final RungeKuttaStepInterpolator prototype,
- final double minStep, final double maxStep,
- final double[] vecAbsoluteTolerance,
- final double[] vecRelativeTolerance) {
- super(name, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
- this.fsal = fsal;
- this.c = c;
- this.a = a;
- this.b = b;
- this.prototype = prototype;
- exp = -1.0 / getOrder();
- // set the default values of the algorithm control parameters
- setSafety(0.9);
- setMinReduction(0.2);
- setMaxGrowth(10.0);
- }
- /** Get the order of the method.
- * @return order of the method
- */
- public abstract int getOrder();
- /** Get the safety factor for stepsize control.
- * @return safety factor
- */
- public double getSafety() {
- return safety;
- }
- /** Set the safety factor for stepsize control.
- * @param safety safety factor
- */
- public void setSafety(final double safety) {
- this.safety = safety;
- }
- /** {@inheritDoc} */
- @Override
- public void integrate(final ExpandableStatefulODE equations, final double t)
- throws NumberIsTooSmallException, DimensionMismatchException,
- MaxCountExceededException, NoBracketingException {
- sanityChecks(equations, t);
- setEquations(equations);
- final boolean forward = t > equations.getTime();
- // create some internal working arrays
- final double[] y0 = equations.getCompleteState();
- final double[] y = y0.clone();
- final int stages = c.length + 1;
- final double[][] yDotK = new double[stages][y.length];
- final double[] yTmp = y0.clone();
- final double[] yDotTmp = new double[y.length];
- // set up an interpolator sharing the integrator arrays
- final RungeKuttaStepInterpolator interpolator = (RungeKuttaStepInterpolator) prototype.copy();
- interpolator.reinitialize(this, yTmp, yDotK, forward,
- equations.getPrimaryMapper(), equations.getSecondaryMappers());
- interpolator.storeTime(equations.getTime());
- // set up integration control objects
- stepStart = equations.getTime();
- double hNew = 0;
- boolean firstTime = true;
- initIntegration(equations.getTime(), y0, t);
- // main integration loop
- isLastStep = false;
- do {
- interpolator.shift();
- // iterate over step size, ensuring local normalized error is smaller than 1
- double error = 10;
- while (error >= 1.0) {
- if (firstTime || !fsal) {
- // first stage
- computeDerivatives(stepStart, y, yDotK[0]);
- }
- if (firstTime) {
- final double[] scale = new double[mainSetDimension];
- if (vecAbsoluteTolerance == null) {
- for (int i = 0; i < scale.length; ++i) {
- scale[i] = scalAbsoluteTolerance + scalRelativeTolerance * JdkMath.abs(y[i]);
- }
- } else {
- for (int i = 0; i < scale.length; ++i) {
- scale[i] = vecAbsoluteTolerance[i] + vecRelativeTolerance[i] * JdkMath.abs(y[i]);
- }
- }
- hNew = initializeStep(forward, getOrder(), scale,
- stepStart, y, yDotK[0], yTmp, yDotK[1]);
- firstTime = false;
- }
- stepSize = hNew;
- if (forward) {
- if (stepStart + stepSize >= t) {
- stepSize = t - stepStart;
- }
- } else {
- if (stepStart + stepSize <= t) {
- stepSize = t - stepStart;
- }
- }
- // next stages
- for (int k = 1; k < stages; ++k) {
- for (int j = 0; j < y0.length; ++j) {
- double sum = a[k-1][0] * yDotK[0][j];
- for (int l = 1; l < k; ++l) {
- sum += a[k-1][l] * yDotK[l][j];
- }
- yTmp[j] = y[j] + stepSize * sum;
- }
- computeDerivatives(stepStart + c[k-1] * stepSize, yTmp, yDotK[k]);
- }
- // estimate the state at the end of the step
- for (int j = 0; j < y0.length; ++j) {
- double sum = b[0] * yDotK[0][j];
- for (int l = 1; l < stages; ++l) {
- sum += b[l] * yDotK[l][j];
- }
- yTmp[j] = y[j] + stepSize * sum;
- }
- // estimate the error at the end of the step
- error = estimateError(yDotK, y, yTmp, stepSize);
- if (error >= 1.0) {
- // reject the step and attempt to reduce error by stepsize control
- final double factor =
- JdkMath.min(maxGrowth,
- JdkMath.max(minReduction, safety * JdkMath.pow(error, exp)));
- hNew = filterStep(stepSize * factor, forward, false);
- }
- }
- // local error is small enough: accept the step, trigger events and step handlers
- interpolator.storeTime(stepStart + stepSize);
- System.arraycopy(yTmp, 0, y, 0, y0.length);
- System.arraycopy(yDotK[stages - 1], 0, yDotTmp, 0, y0.length);
- stepStart = acceptStep(interpolator, y, yDotTmp, t);
- System.arraycopy(y, 0, yTmp, 0, y.length);
- if (!isLastStep) {
- // prepare next step
- interpolator.storeTime(stepStart);
- if (fsal) {
- // save the last evaluation for the next step
- System.arraycopy(yDotTmp, 0, yDotK[0], 0, y0.length);
- }
- // stepsize control for next step
- final double factor =
- JdkMath.min(maxGrowth, JdkMath.max(minReduction, safety * JdkMath.pow(error, exp)));
- final double scaledH = stepSize * factor;
- final double nextT = stepStart + scaledH;
- final boolean nextIsLast = forward ? (nextT >= t) : (nextT <= t);
- hNew = filterStep(scaledH, forward, nextIsLast);
- final double filteredNextT = stepStart + hNew;
- final boolean filteredNextIsLast = forward ? (filteredNextT >= t) : (filteredNextT <= t);
- if (filteredNextIsLast) {
- hNew = t - stepStart;
- }
- }
- } while (!isLastStep);
- // dispatch results
- equations.setTime(stepStart);
- equations.setCompleteState(y);
- resetInternalState();
- }
- /** Get the minimal reduction factor for stepsize control.
- * @return minimal reduction factor
- */
- public double getMinReduction() {
- return minReduction;
- }
- /** Set the minimal reduction factor for stepsize control.
- * @param minReduction minimal reduction factor
- */
- public void setMinReduction(final double minReduction) {
- this.minReduction = minReduction;
- }
- /** Get the maximal growth factor for stepsize control.
- * @return maximal growth factor
- */
- public double getMaxGrowth() {
- return maxGrowth;
- }
- /** Set the maximal growth factor for stepsize control.
- * @param maxGrowth maximal growth factor
- */
- public void setMaxGrowth(final double maxGrowth) {
- this.maxGrowth = maxGrowth;
- }
- /** Compute the error ratio.
- * @param yDotK derivatives computed during the first stages
- * @param y0 estimate of the step at the start of the step
- * @param y1 estimate of the step at the end of the step
- * @param h current step
- * @return error ratio, greater than 1 if step should be rejected
- */
- protected abstract double estimateError(double[][] yDotK,
- double[] y0, double[] y1,
- double h);
- }