ThreeEighthesStepInterpolator.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math4.legacy.ode.nonstiff;
- import org.apache.commons.math4.legacy.ode.sampling.StepInterpolator;
- /**
- * This class implements a step interpolator for the 3/8 fourth
- * order Runge-Kutta integrator.
- *
- * <p>This interpolator allows to compute dense output inside the last
- * step computed. The interpolation equation is consistent with the
- * integration scheme :
- * <ul>
- * <li>Using reference point at step start:<br>
- * y(t<sub>n</sub> + θ h) = y (t<sub>n</sub>)
- * + θ (h/8) [ (8 - 15 θ + 8 θ<sup>2</sup>) y'<sub>1</sub>
- * + 3 * (15 θ - 12 θ<sup>2</sup>) y'<sub>2</sub>
- * + 3 θ y'<sub>3</sub>
- * + (-3 θ + 4 θ<sup>2</sup>) y'<sub>4</sub>
- * ]
- * </li>
- * <li>Using reference point at step end:<br>
- * y(t<sub>n</sub> + θ h) = y (t<sub>n</sub> + h)
- * - (1 - θ) (h/8) [(1 - 7 θ + 8 θ<sup>2</sup>) y'<sub>1</sub>
- * + 3 (1 + θ - 4 θ<sup>2</sup>) y'<sub>2</sub>
- * + 3 (1 + θ) y'<sub>3</sub>
- * + (1 + θ + 4 θ<sup>2</sup>) y'<sub>4</sub>
- * ]
- * </li>
- * </ul>
- *
- * where θ belongs to [0 ; 1] and where y'<sub>1</sub> to y'<sub>4</sub> are the four
- * evaluations of the derivatives already computed during the
- * step.
- *
- * @see ThreeEighthesIntegrator
- * @since 1.2
- */
- class ThreeEighthesStepInterpolator
- extends RungeKuttaStepInterpolator {
- /** Serializable version identifier. */
- private static final long serialVersionUID = 20111120L;
- /** Simple constructor.
- * This constructor builds an instance that is not usable yet, the
- * {@link
- * org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator#reinitialize}
- * method should be called before using the instance in order to
- * initialize the internal arrays. This constructor is used only
- * in order to delay the initialization in some cases. The {@link
- * RungeKuttaIntegrator} class uses the prototyping design pattern
- * to create the step interpolators by cloning an uninitialized model
- * and later initializing the copy.
- */
- // CHECKSTYLE: stop RedundantModifier
- // the public modifier here is needed for serialization
- public ThreeEighthesStepInterpolator() {
- }
- // CHECKSTYLE: resume RedundantModifier
- /** Copy constructor.
- * @param interpolator interpolator to copy from. The copy is a deep
- * copy: its arrays are separated from the original arrays of the
- * instance
- */
- ThreeEighthesStepInterpolator(final ThreeEighthesStepInterpolator interpolator) {
- super(interpolator);
- }
- /** {@inheritDoc} */
- @Override
- protected StepInterpolator doCopy() {
- return new ThreeEighthesStepInterpolator(this);
- }
- /** {@inheritDoc} */
- @Override
- protected void computeInterpolatedStateAndDerivatives(final double theta,
- final double oneMinusThetaH) {
- final double coeffDot3 = 0.75 * theta;
- final double coeffDot1 = coeffDot3 * (4 * theta - 5) + 1;
- final double coeffDot2 = coeffDot3 * (5 - 6 * theta);
- final double coeffDot4 = coeffDot3 * (2 * theta - 1);
- if (previousState != null && theta <= 0.5) {
- final double s = theta * h / 8.0;
- final double fourTheta2 = 4 * theta * theta;
- final double coeff1 = s * (8 - 15 * theta + 2 * fourTheta2);
- final double coeff2 = 3 * s * (5 * theta - fourTheta2);
- final double coeff3 = 3 * s * theta;
- final double coeff4 = s * (-3 * theta + fourTheta2);
- for (int i = 0; i < interpolatedState.length; ++i) {
- final double yDot1 = yDotK[0][i];
- final double yDot2 = yDotK[1][i];
- final double yDot3 = yDotK[2][i];
- final double yDot4 = yDotK[3][i];
- interpolatedState[i] =
- previousState[i] + coeff1 * yDot1 + coeff2 * yDot2 + coeff3 * yDot3 + coeff4 * yDot4;
- interpolatedDerivatives[i] =
- coeffDot1 * yDot1 + coeffDot2 * yDot2 + coeffDot3 * yDot3 + coeffDot4 * yDot4;
- }
- } else {
- final double s = oneMinusThetaH / 8.0;
- final double fourTheta2 = 4 * theta * theta;
- final double coeff1 = s * (1 - 7 * theta + 2 * fourTheta2);
- final double coeff2 = 3 * s * (1 + theta - fourTheta2);
- final double coeff3 = 3 * s * (1 + theta);
- final double coeff4 = s * (1 + theta + fourTheta2);
- for (int i = 0; i < interpolatedState.length; ++i) {
- final double yDot1 = yDotK[0][i];
- final double yDot2 = yDotK[1][i];
- final double yDot3 = yDotK[2][i];
- final double yDot4 = yDotK[3][i];
- interpolatedState[i] =
- currentState[i] - coeff1 * yDot1 - coeff2 * yDot2 - coeff3 * yDot3 - coeff4 * yDot4;
- interpolatedDerivatives[i] =
- coeffDot1 * yDot1 + coeffDot2 * yDot2 + coeffDot3 * yDot3 + coeffDot4 * yDot4;
- }
- }
- }
- }