SimplexOptimizer.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv;
- import java.util.Arrays;
- import java.util.List;
- import java.util.ArrayList;
- import java.util.Comparator;
- import java.util.Collections;
- import java.util.Objects;
- import java.util.function.UnaryOperator;
- import java.util.function.IntSupplier;
- import java.util.concurrent.CopyOnWriteArrayList;
- import org.apache.commons.math4.legacy.core.MathArrays;
- import org.apache.commons.math4.legacy.analysis.MultivariateFunction;
- import org.apache.commons.math4.legacy.exception.MathUnsupportedOperationException;
- import org.apache.commons.math4.legacy.exception.MathInternalError;
- import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
- import org.apache.commons.math4.legacy.optim.ConvergenceChecker;
- import org.apache.commons.math4.legacy.optim.OptimizationData;
- import org.apache.commons.math4.legacy.optim.PointValuePair;
- import org.apache.commons.math4.legacy.optim.SimpleValueChecker;
- import org.apache.commons.math4.legacy.optim.InitialGuess;
- import org.apache.commons.math4.legacy.optim.MaxEval;
- import org.apache.commons.math4.legacy.optim.nonlinear.scalar.GoalType;
- import org.apache.commons.math4.legacy.optim.nonlinear.scalar.MultivariateOptimizer;
- import org.apache.commons.math4.legacy.optim.nonlinear.scalar.SimulatedAnnealing;
- import org.apache.commons.math4.legacy.optim.nonlinear.scalar.PopulationSize;
- import org.apache.commons.math4.legacy.optim.nonlinear.scalar.ObjectiveFunction;
- /**
- * This class implements simplex-based direct search optimization.
- *
- * <p>
- * Direct search methods only use objective function values, they do
- * not need derivatives and don't either try to compute approximation
- * of the derivatives. According to a 1996 paper by Margaret H. Wright
- * (<a href="http://cm.bell-labs.com/cm/cs/doc/96/4-02.ps.gz">Direct
- * Search Methods: Once Scorned, Now Respectable</a>), they are used
- * when either the computation of the derivative is impossible (noisy
- * functions, unpredictable discontinuities) or difficult (complexity,
- * computation cost). In the first cases, rather than an optimum, a
- * <em>not too bad</em> point is desired. In the latter cases, an
- * optimum is desired but cannot be reasonably found. In all cases
- * direct search methods can be useful.
- *
- * <p>
- * Simplex-based direct search methods are based on comparison of
- * the objective function values at the vertices of a simplex (which is a
- * set of n+1 points in dimension n) that is updated by the algorithms
- * steps.
- *
- * <p>
- * In addition to those documented in
- * {@link MultivariateOptimizer#optimize(OptimizationData[]) MultivariateOptimizer},
- * an instance of this class will register the following data:
- * <ul>
- * <li>{@link Simplex}</li>
- * <li>{@link Simplex.TransformFactory}</li>
- * <li>{@link SimulatedAnnealing}</li>
- * <li>{@link PopulationSize}</li>
- * </ul>
- *
- * <p>
- * Each call to {@code optimize} will re-use the start configuration of
- * the current simplex and move it such that its first vertex is at the
- * provided start point of the optimization.
- * If the {@code optimize} method is called to solve a different problem
- * and the number of parameters change, the simplex must be re-initialized
- * to one with the appropriate dimensions.
- *
- * <p>
- * Convergence is considered achieved when <em>all</em> the simplex points
- * have converged.
- * <p>
- * Whenever {@link SimulatedAnnealing simulated annealing (SA)} is activated,
- * and the SA phase has completed, convergence has probably not been reached
- * yet; whenever it's the case, an additional (non-SA) search will be performed
- * (using the current best simplex point as a start point).
- * <p>
- * Additional "best list" searches can be requested through setting the
- * {@link PopulationSize} argument of the {@link #optimize(OptimizationData[])
- * optimize} method.
- *
- * <p>
- * This implementation does not directly support constrained optimization
- * with simple bounds.
- * The call to {@link #optimize(OptimizationData[]) optimize} will throw
- * {@link MathUnsupportedOperationException} if bounds are passed to it.
- *
- * @see NelderMeadTransform
- * @see MultiDirectionalTransform
- * @see HedarFukushimaTransform
- */
- public class SimplexOptimizer extends MultivariateOptimizer {
- /** Default simplex side length ratio. */
- private static final double SIMPLEX_SIDE_RATIO = 1e-1;
- /** Simplex update function factory. */
- private Simplex.TransformFactory updateRule;
- /** Initial simplex. */
- private Simplex initialSimplex;
- /** Simulated annealing setup (optional). */
- private SimulatedAnnealing simulatedAnnealing = null;
- /** User-defined number of additional optimizations (optional). */
- private int populationSize = 0;
- /** Actual number of additional optimizations. */
- private int additionalSearch = 0;
- /** Callbacks. */
- private final List<Observer> callbacks = new CopyOnWriteArrayList<>();
- /**
- * @param checker Convergence checker.
- */
- public SimplexOptimizer(ConvergenceChecker<PointValuePair> checker) {
- super(checker);
- }
- /**
- * @param rel Relative threshold.
- * @param abs Absolute threshold.
- */
- public SimplexOptimizer(double rel,
- double abs) {
- this(new SimpleValueChecker(rel, abs));
- }
- /**
- * Callback interface for updating caller's code with the current
- * state of the optimization.
- */
- @FunctionalInterface
- public interface Observer {
- /**
- * Method called after each modification of the {@code simplex}.
- *
- * @param simplex Current simplex.
- * @param isInit {@code true} at the start of a new search (either
- * "main" or "best list"), after the initial simplex's vertices
- * have been evaluated.
- * @param numEval Number of evaluations of the objective function.
- */
- void update(Simplex simplex,
- boolean isInit,
- int numEval);
- }
- /**
- * Register a callback.
- *
- * @param cb Callback.
- */
- public void addObserver(Observer cb) {
- Objects.requireNonNull(cb, "Callback");
- callbacks.add(cb);
- }
- /** {@inheritDoc} */
- @Override
- protected PointValuePair doOptimize() {
- checkParameters();
- final MultivariateFunction evalFunc = getObjectiveFunction();
- final boolean isMinim = getGoalType() == GoalType.MINIMIZE;
- final Comparator<PointValuePair> comparator = (o1, o2) -> {
- final double v1 = o1.getValue();
- final double v2 = o2.getValue();
- return isMinim ? Double.compare(v1, v2) : Double.compare(v2, v1);
- };
- // Start points for additional search.
- final List<PointValuePair> bestList = new ArrayList<>();
- Simplex currentSimplex = initialSimplex.translate(getStartPoint()).evaluate(evalFunc, comparator);
- notifyObservers(currentSimplex, true);
- double temperature = Double.NaN; // Only used with simulated annealing.
- Simplex previousSimplex = null;
- if (simulatedAnnealing != null) {
- temperature =
- temperature(currentSimplex.get(0),
- currentSimplex.get(currentSimplex.getDimension()),
- simulatedAnnealing.getStartProbability());
- }
- while (true) {
- if (previousSimplex != null) { // Skip check at first iteration.
- if (hasConverged(previousSimplex, currentSimplex)) {
- return currentSimplex.get(0);
- }
- }
- // We still need to search.
- previousSimplex = currentSimplex;
- if (simulatedAnnealing != null) {
- // Update current temperature.
- temperature =
- simulatedAnnealing.getCoolingSchedule().apply(temperature,
- currentSimplex);
- final double endTemperature =
- temperature(currentSimplex.get(0),
- currentSimplex.get(currentSimplex.getDimension()),
- simulatedAnnealing.getEndProbability());
- if (temperature < endTemperature) {
- break;
- }
- final UnaryOperator<Simplex> update =
- updateRule.create(evalFunc,
- comparator,
- simulatedAnnealing.metropolis(temperature));
- for (int i = 0; i < simulatedAnnealing.getEpochDuration(); i++) {
- // Simplex is transformed (and observers are notified).
- currentSimplex = applyUpdate(update,
- currentSimplex,
- evalFunc,
- comparator);
- }
- } else {
- // No simulated annealing.
- final UnaryOperator<Simplex> update =
- updateRule.create(evalFunc, comparator, null);
- // Simplex is transformed (and observers are notified).
- currentSimplex = applyUpdate(update,
- currentSimplex,
- evalFunc,
- comparator);
- }
- if (additionalSearch != 0) {
- // In "bestList", we must keep track of at least two points
- // in order to be able to compute the new initial simplex for
- // the additional search.
- final int max = Math.max(additionalSearch, 2);
- // Store best points.
- for (int i = 0; i < currentSimplex.getSize(); i++) {
- keepIfBetter(currentSimplex.get(i),
- comparator,
- bestList,
- max);
- }
- }
- incrementIterationCount();
- }
- // No convergence.
- if (additionalSearch > 0) {
- // Additional optimizations.
- // Reference to counter in the "main" search in order to retrieve
- // the total number of evaluations in the "best list" search.
- final IntSupplier evalCount = () -> getEvaluations();
- return bestListSearch(evalFunc,
- comparator,
- bestList,
- evalCount);
- }
- throw new MathInternalError(); // Should never happen.
- }
- /**
- * Scans the list of (required and optional) optimization data that
- * characterize the problem.
- *
- * @param optData Optimization data.
- * The following data will be looked for:
- * <ul>
- * <li>{@link Simplex}</li>
- * <li>{@link Simplex.TransformFactory}</li>
- * <li>{@link SimulatedAnnealing}</li>
- * <li>{@link PopulationSize}</li>
- * </ul>
- */
- @Override
- protected void parseOptimizationData(OptimizationData... optData) {
- // Allow base class to register its own data.
- super.parseOptimizationData(optData);
- // The existing values (as set by the previous call) are reused
- // if not provided in the argument list.
- for (OptimizationData data : optData) {
- if (data instanceof Simplex) {
- initialSimplex = (Simplex) data;
- } else if (data instanceof Simplex.TransformFactory) {
- updateRule = (Simplex.TransformFactory) data;
- } else if (data instanceof SimulatedAnnealing) {
- simulatedAnnealing = (SimulatedAnnealing) data;
- } else if (data instanceof PopulationSize) {
- populationSize = ((PopulationSize) data).getPopulationSize();
- }
- }
- }
- /**
- * Detects whether the simplex has shrunk below the user-defined
- * tolerance.
- *
- * @param previous Simplex at previous iteration.
- * @param current Simplex at current iteration.
- * @return {@code true} if convergence is considered achieved.
- */
- private boolean hasConverged(Simplex previous,
- Simplex current) {
- final ConvergenceChecker<PointValuePair> checker = getConvergenceChecker();
- for (int i = 0; i < current.getSize(); i++) {
- final PointValuePair prev = previous.get(i);
- final PointValuePair curr = current.get(i);
- if (!checker.converged(getIterations(), prev, curr)) {
- return false;
- }
- }
- return true;
- }
- /**
- * @throws MathUnsupportedOperationException if bounds were passed to the
- * {@link #optimize(OptimizationData[]) optimize} method.
- * @throws NullPointerException if no initial simplex or no transform rule
- * was passed to the {@link #optimize(OptimizationData[]) optimize} method.
- * @throws IllegalArgumentException if {@link #populationSize} is negative.
- */
- private void checkParameters() {
- Objects.requireNonNull(updateRule, "Update rule");
- Objects.requireNonNull(initialSimplex, "Initial simplex");
- if (getLowerBound() != null ||
- getUpperBound() != null) {
- throw new MathUnsupportedOperationException(LocalizedFormats.CONSTRAINT);
- }
- if (populationSize < 0) {
- throw new IllegalArgumentException("Population size");
- }
- additionalSearch = simulatedAnnealing == null ?
- Math.max(0, populationSize) :
- Math.max(1, populationSize);
- }
- /**
- * Computes the temperature as a function of the acceptance probability
- * and the fitness difference between two of the simplex vertices (usually
- * the best and worst points).
- *
- * @param p1 Simplex point.
- * @param p2 Simplex point.
- * @param prob Acceptance probability.
- * @return the temperature.
- */
- private double temperature(PointValuePair p1,
- PointValuePair p2,
- double prob) {
- return -Math.abs(p1.getValue() - p2.getValue()) / Math.log(prob);
- }
- /**
- * Stores the given {@code candidate} if its fitness is better than
- * that of the last (assumed to be the worst) point in {@code list}.
- *
- * <p>If the list is below the maximum size then the {@code candidate}
- * is added if it is not already in the list. The list is sorted
- * when it reaches the maximum size.
- *
- * @param candidate Point to be stored.
- * @param comp Fitness comparator.
- * @param list Starting points (modified in-place).
- * @param max Maximum size of the {@code list}.
- */
- private static void keepIfBetter(PointValuePair candidate,
- Comparator<PointValuePair> comp,
- List<PointValuePair> list,
- int max) {
- final int listSize = list.size();
- final double[] candidatePoint = candidate.getPoint();
- if (listSize == 0) {
- list.add(candidate);
- } else if (listSize < max) {
- // List is not fully populated yet.
- for (PointValuePair p : list) {
- final double[] pPoint = p.getPoint();
- if (Arrays.equals(pPoint, candidatePoint)) {
- // Point was already stored.
- return;
- }
- }
- // Store candidate.
- list.add(candidate);
- // Sort the list when required
- if (list.size() == max) {
- Collections.sort(list, comp);
- }
- } else {
- final int last = max - 1;
- if (comp.compare(candidate, list.get(last)) < 0) {
- for (PointValuePair p : list) {
- final double[] pPoint = p.getPoint();
- if (Arrays.equals(pPoint, candidatePoint)) {
- // Point was already stored.
- return;
- }
- }
- // Store better candidate and reorder the list.
- list.set(last, candidate);
- Collections.sort(list, comp);
- }
- }
- }
- /**
- * Computes the smallest distance between the given {@code point}
- * and any of the other points in the {@code list}.
- *
- * @param point Point.
- * @param list List.
- * @return the smallest distance.
- */
- private static double shortestDistance(PointValuePair point,
- List<PointValuePair> list) {
- double minDist = Double.POSITIVE_INFINITY;
- final double[] p = point.getPoint();
- for (PointValuePair other : list) {
- final double[] pOther = other.getPoint();
- if (!Arrays.equals(p, pOther)) {
- final double dist = MathArrays.distance(p, pOther);
- if (dist < minDist) {
- minDist = dist;
- }
- }
- }
- return minDist;
- }
- /**
- * Perform additional optimizations.
- *
- * @param evalFunc Objective function.
- * @param comp Fitness comparator.
- * @param bestList Best points encountered during the "main" search.
- * List is assumed to be ordered from best to worst.
- * @param evalCount Evaluation counter.
- * @return the optimum.
- */
- private PointValuePair bestListSearch(MultivariateFunction evalFunc,
- Comparator<PointValuePair> comp,
- List<PointValuePair> bestList,
- IntSupplier evalCount) {
- PointValuePair best = bestList.get(0); // Overall best result.
- // Additional local optimizations using each of the best
- // points visited during the main search.
- for (int i = 0; i < additionalSearch; i++) {
- final PointValuePair start = bestList.get(i);
- // Find shortest distance to the other points.
- final double dist = shortestDistance(start, bestList);
- final double[] init = start.getPoint();
- // Create smaller initial simplex.
- final Simplex simplex = Simplex.equalSidesAlongAxes(init.length,
- SIMPLEX_SIDE_RATIO * dist);
- final PointValuePair r = directSearch(init,
- simplex,
- evalFunc,
- getConvergenceChecker(),
- getGoalType(),
- callbacks,
- evalCount);
- if (comp.compare(r, best) < 0) {
- best = r; // New overall best.
- }
- }
- return best;
- }
- /**
- * @param init Start point.
- * @param simplex Initial simplex.
- * @param eval Objective function.
- * Note: It is assumed that evaluations of this function are
- * incrementing the main counter.
- * @param checker Convergence checker.
- * @param goalType Whether to minimize or maximize the objective function.
- * @param cbList Callbacks.
- * @param evalCount Evaluation counter.
- * @return the optimum.
- */
- private static PointValuePair directSearch(double[] init,
- Simplex simplex,
- MultivariateFunction eval,
- ConvergenceChecker<PointValuePair> checker,
- GoalType goalType,
- List<Observer> cbList,
- final IntSupplier evalCount) {
- final SimplexOptimizer optim = new SimplexOptimizer(checker);
- for (Observer cOrig : cbList) {
- final SimplexOptimizer.Observer cNew = (spx, isInit, numEval) ->
- cOrig.update(spx, isInit, evalCount.getAsInt());
- optim.addObserver(cNew);
- }
- return optim.optimize(MaxEval.unlimited(),
- new ObjectiveFunction(eval),
- goalType,
- new InitialGuess(init),
- simplex,
- new MultiDirectionalTransform());
- }
- /**
- * @param simplex Current simplex.
- * @param isInit Set to {@code true} at the start of a new search
- * (either "main" or "best list"), after the evaluation of the initial
- * simplex's vertices.
- */
- private void notifyObservers(Simplex simplex,
- boolean isInit) {
- for (Observer cb : callbacks) {
- cb.update(simplex,
- isInit,
- getEvaluations());
- }
- }
- /**
- * Applies the {@code update} to the given {@code simplex} (and notifies
- * observers).
- *
- * @param update Simplex transformation.
- * @param simplex Current simplex.
- * @param eval Objective function.
- * @param comp Fitness comparator.
- * @return the transformed simplex.
- */
- private Simplex applyUpdate(UnaryOperator<Simplex> update,
- Simplex simplex,
- MultivariateFunction eval,
- Comparator<PointValuePair> comp) {
- final Simplex transformed = update.apply(simplex).evaluate(eval, comp);
- notifyObservers(transformed, false);
- return transformed;
- }
- }