MultivariateOptimizer.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math4.legacy.optim.nonlinear.scalar;
- import org.apache.commons.math4.legacy.analysis.MultivariateFunction;
- import org.apache.commons.math4.legacy.analysis.UnivariateFunction;
- import org.apache.commons.math4.legacy.optim.BaseMultivariateOptimizer;
- import org.apache.commons.math4.legacy.optim.ConvergenceChecker;
- import org.apache.commons.math4.legacy.optim.OptimizationData;
- import org.apache.commons.math4.legacy.optim.PointValuePair;
- import org.apache.commons.math4.legacy.optim.MaxEval;
- import org.apache.commons.math4.legacy.optim.univariate.BracketFinder;
- import org.apache.commons.math4.legacy.optim.univariate.BrentOptimizer;
- import org.apache.commons.math4.legacy.optim.univariate.SearchInterval;
- import org.apache.commons.math4.legacy.optim.univariate.SimpleUnivariateValueChecker;
- import org.apache.commons.math4.legacy.optim.univariate.UnivariateObjectiveFunction;
- import org.apache.commons.math4.legacy.optim.univariate.UnivariateOptimizer;
- import org.apache.commons.math4.legacy.optim.univariate.UnivariatePointValuePair;
- /**
- * Base class for a multivariate scalar function optimizer.
- *
- * @since 3.1
- */
- public abstract class MultivariateOptimizer
- extends BaseMultivariateOptimizer<PointValuePair> {
- /** Objective function. */
- private MultivariateFunction function;
- /** Type of optimization. */
- private GoalType goal;
- /** Line search relative tolerance. */
- private double lineSearchRelativeTolerance = 1e-8;
- /** Line search absolute tolerance. */
- private double lineSearchAbsoluteTolerance = 1e-8;
- /** Line serach initial bracketing range. */
- private double lineSearchInitialBracketingRange = 1d;
- /** Line search. */
- private LineSearch lineSearch;
- /**
- * @param checker Convergence checker.
- */
- protected MultivariateOptimizer(ConvergenceChecker<PointValuePair> checker) {
- super(checker);
- }
- /**
- * {@inheritDoc}
- *
- * @param optData Optimization data. In addition to those documented in
- * {@link BaseMultivariateOptimizer#parseOptimizationData(OptimizationData[])
- * BaseMultivariateOptimizer}, this method will register the following data:
- * <ul>
- * <li>{@link ObjectiveFunction}</li>
- * <li>{@link GoalType}</li>
- * <li>{@link LineSearchTolerance}</li>
- * </ul>
- * @return {@inheritDoc}
- * @throws org.apache.commons.math4.legacy.exception.TooManyEvaluationsException
- * if the maximal number of evaluations is exceeded.
- */
- @Override
- public PointValuePair optimize(OptimizationData... optData) {
- // Set up base class and perform computation.
- return super.optimize(optData);
- }
- /**
- * Scans the list of (required and optional) optimization data that
- * characterize the problem.
- *
- * @param optData Optimization data.
- * The following data will be looked for:
- * <ul>
- * <li>{@link ObjectiveFunction}</li>
- * <li>{@link GoalType}</li>
- * <li>{@link LineSearchTolerance}</li>
- * </ul>
- */
- @Override
- protected void parseOptimizationData(OptimizationData... optData) {
- // Allow base class to register its own data.
- super.parseOptimizationData(optData);
- // The existing values (as set by the previous call) are reused if
- // not provided in the argument list.
- for (OptimizationData data : optData) {
- if (data instanceof GoalType) {
- goal = (GoalType) data;
- continue;
- }
- if (data instanceof ObjectiveFunction) {
- final MultivariateFunction delegate = ((ObjectiveFunction) data).getObjectiveFunction();
- function = new MultivariateFunction() {
- @Override
- public double value(double[] point) {
- incrementEvaluationCount();
- return delegate.value(point);
- }
- };
- continue;
- }
- if (data instanceof LineSearchTolerance) {
- final LineSearchTolerance tol = (LineSearchTolerance) data;
- lineSearchRelativeTolerance = tol.getRelativeTolerance();
- lineSearchAbsoluteTolerance = tol.getAbsoluteTolerance();
- lineSearchInitialBracketingRange = tol.getInitialBracketingRange();
- continue;
- }
- }
- }
- /**
- * Intantiate the line search implementation.
- */
- protected void createLineSearch() {
- lineSearch = new LineSearch(this,
- lineSearchRelativeTolerance,
- lineSearchAbsoluteTolerance,
- lineSearchInitialBracketingRange);
- }
- /**
- * Finds the number {@code alpha} that optimizes
- * {@code f(startPoint + alpha * direction)}.
- *
- * @param startPoint Starting point.
- * @param direction Search direction.
- * @return the optimum.
- * @throws org.apache.commons.math4.legacy.exception.TooManyEvaluationsException
- * if the number of evaluations is exceeded.
- */
- protected UnivariatePointValuePair lineSearch(final double[] startPoint,
- final double[] direction) {
- return lineSearch.search(startPoint, direction);
- }
- /**
- * @return the optimization type.
- */
- protected GoalType getGoalType() {
- return goal;
- }
- /**
- * @return a wrapper that delegates to the user-supplied function,
- * and counts the number of evaluations.
- */
- protected MultivariateFunction getObjectiveFunction() {
- return function;
- }
- /**
- * Computes the objective function value.
- * This method <em>must</em> be called by subclasses to enforce the
- * evaluation counter limit.
- *
- * @param params Point at which the objective function must be evaluated.
- * @return the objective function value at the specified point.
- * @throws org.apache.commons.math4.legacy.exception.TooManyEvaluationsException
- * if the maximal number of evaluations is exceeded.
- *
- * @deprecated Use {@link #getObjectiveFunction()} instead.
- */
- @Deprecated
- public double computeObjectiveValue(double[] params) {
- return function.value(params);
- }
- /**
- * Find the minimum of the objective function along a given direction.
- *
- * @since 4.0
- */
- private static class LineSearch {
- /**
- * Value that will pass the precondition check for {@link BrentOptimizer}
- * but will not pass the convergence check, so that the custom checker
- * will always decide when to stop the line search.
- */
- private static final double REL_TOL_UNUSED = 1e-15;
- /**
- * Value that will pass the precondition check for {@link BrentOptimizer}
- * but will not pass the convergence check, so that the custom checker
- * will always decide when to stop the line search.
- */
- private static final double ABS_TOL_UNUSED = Double.MIN_VALUE;
- /**
- * Optimizer used for line search.
- */
- private final UnivariateOptimizer lineOptimizer;
- /**
- * Automatic bracketing.
- */
- private final BracketFinder bracket = new BracketFinder();
- /**
- * Extent of the initial interval used to find an interval that
- * brackets the optimum.
- */
- private final double initialBracketingRange;
- /**
- * Optimizer on behalf of which the line search must be performed.
- */
- private final MultivariateOptimizer mainOptimizer;
- /**
- * The {@code BrentOptimizer} default stopping criterion uses the
- * tolerances to check the domain (point) values, not the function
- * values.
- * The {@code relativeTolerance} and {@code absoluteTolerance}
- * arguments are thus passed to a {@link SimpleUnivariateValueChecker
- * custom checker} that will use the function values.
- *
- * @param optimizer Optimizer on behalf of which the line search
- * be performed.
- * Its {@link MultivariateOptimizer#getObjectiveFunction() objective
- * function} will be called by the {@link #search(double[],double[])
- * search} method.
- * @param relativeTolerance Search will stop when the function relative
- * difference between successive iterations is below this value.
- * @param absoluteTolerance Search will stop when the function absolute
- * difference between successive iterations is below this value.
- * @param initialBracketingRange Extent of the initial interval used to
- * find an interval that brackets the optimum.
- * If the optimized function varies a lot in the vicinity of the optimum,
- * it may be necessary to provide a value lower than the distance between
- * successive local minima.
- */
- /* package-private */ LineSearch(MultivariateOptimizer optimizer,
- double relativeTolerance,
- double absoluteTolerance,
- double initialBracketingRange) {
- mainOptimizer = optimizer;
- lineOptimizer = new BrentOptimizer(REL_TOL_UNUSED,
- ABS_TOL_UNUSED,
- new SimpleUnivariateValueChecker(relativeTolerance,
- absoluteTolerance));
- this.initialBracketingRange = initialBracketingRange;
- }
- /**
- * Finds the number {@code alpha} that optimizes
- * {@code f(startPoint + alpha * direction)}.
- *
- * @param startPoint Starting point.
- * @param direction Search direction.
- * @return the optimum.
- * @throws org.apache.commons.math4.legacy.exception.TooManyEvaluationsException
- * if the number of evaluations is exceeded.
- */
- /* package-private */ UnivariatePointValuePair search(final double[] startPoint,
- final double[] direction) {
- final int n = startPoint.length;
- final MultivariateFunction func = mainOptimizer.getObjectiveFunction();
- final UnivariateFunction f = new UnivariateFunction() {
- /** {@inheritDoc} */
- @Override
- public double value(double alpha) {
- final double[] x = new double[n];
- for (int i = 0; i < n; i++) {
- x[i] = startPoint[i] + alpha * direction[i];
- }
- return func.value(x);
- }
- };
- final GoalType goal = mainOptimizer.getGoalType();
- bracket.search(f, goal, 0, initialBracketingRange);
- // Passing "MAX_VALUE" as a dummy value because it is the enclosing
- // class that counts the number of evaluations (and will eventually
- // generate the exception).
- return lineOptimizer.optimize(new MaxEval(Integer.MAX_VALUE),
- new UnivariateObjectiveFunction(f),
- goal,
- new SearchInterval(bracket.getLo(),
- bracket.getHi(),
- bracket.getMid()));
- }
- }
- }