KendallsCorrelation.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math4.legacy.stat.correlation;
- import java.util.Arrays;
- import java.util.Comparator;
- import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
- import org.apache.commons.math4.legacy.linear.BlockRealMatrix;
- import org.apache.commons.math4.legacy.linear.MatrixUtils;
- import org.apache.commons.math4.legacy.linear.RealMatrix;
- import org.apache.commons.math4.core.jdkmath.JdkMath;
- import org.apache.commons.math4.legacy.core.Pair;
- /**
- * Implementation of Kendall's Tau-b rank correlation.
- * <p>
- * A pair of observations (x<sub>1</sub>, y<sub>1</sub>) and
- * (x<sub>2</sub>, y<sub>2</sub>) are considered <i>concordant</i> if
- * x<sub>1</sub> < x<sub>2</sub> and y<sub>1</sub> < y<sub>2</sub>
- * or x<sub>2</sub> < x<sub>1</sub> and y<sub>2</sub> < y<sub>1</sub>.
- * The pair is <i>discordant</i> if x<sub>1</sub> < x<sub>2</sub> and
- * y<sub>2</sub> < y<sub>1</sub> or x<sub>2</sub> < x<sub>1</sub> and
- * y<sub>1</sub> < y<sub>2</sub>. If either x<sub>1</sub> = x<sub>2</sub>
- * or y<sub>1</sub> = y<sub>2</sub>, the pair is neither concordant nor
- * discordant.
- * <p>
- * Kendall's Tau-b is defined as:
- * <div style="white-space: pre"><code>
- * tau<sub>b</sub> = (n<sub>c</sub> - n<sub>d</sub>) / sqrt((n<sub>0</sub> - n<sub>1</sub>) * (n<sub>0</sub> - n<sub>2</sub>))
- * </code></div>
- * <p>
- * where:
- * <ul>
- * <li>n<sub>0</sub> = n * (n - 1) / 2</li>
- * <li>n<sub>c</sub> = Number of concordant pairs</li>
- * <li>n<sub>d</sub> = Number of discordant pairs</li>
- * <li>n<sub>1</sub> = sum of t<sub>i</sub> * (t<sub>i</sub> - 1) / 2 for all i</li>
- * <li>n<sub>2</sub> = sum of u<sub>j</sub> * (u<sub>j</sub> - 1) / 2 for all j</li>
- * <li>t<sub>i</sub> = Number of tied values in the i<sup>th</sup> group of ties in x</li>
- * <li>u<sub>j</sub> = Number of tied values in the j<sup>th</sup> group of ties in y</li>
- * </ul>
- * <p>
- * This implementation uses the O(n log n) algorithm described in
- * William R. Knight's 1966 paper "A Computer Method for Calculating
- * Kendall's Tau with Ungrouped Data" in the Journal of the American
- * Statistical Association.
- *
- * @see <a href="http://en.wikipedia.org/wiki/Kendall_tau_rank_correlation_coefficient">
- * Kendall tau rank correlation coefficient (Wikipedia)</a>
- * @see <a href="http://www.jstor.org/stable/2282833">A Computer
- * Method for Calculating Kendall's Tau with Ungrouped Data</a>
- *
- * @since 3.3
- */
- public class KendallsCorrelation {
- /** correlation matrix. */
- private final RealMatrix correlationMatrix;
- /**
- * Create a KendallsCorrelation instance without data.
- */
- public KendallsCorrelation() {
- correlationMatrix = null;
- }
- /**
- * Create a KendallsCorrelation from a rectangular array
- * whose columns represent values of variables to be correlated.
- *
- * @param data rectangular array with columns representing variables
- * @throws IllegalArgumentException if the input data array is not
- * rectangular with at least two rows and two columns.
- */
- public KendallsCorrelation(double[][] data) {
- this(MatrixUtils.createRealMatrix(data));
- }
- /**
- * Create a KendallsCorrelation from a RealMatrix whose columns
- * represent variables to be correlated.
- *
- * @param matrix matrix with columns representing variables to correlate
- */
- public KendallsCorrelation(RealMatrix matrix) {
- correlationMatrix = computeCorrelationMatrix(matrix);
- }
- /**
- * Returns the correlation matrix.
- *
- * @return correlation matrix
- */
- public RealMatrix getCorrelationMatrix() {
- return correlationMatrix;
- }
- /**
- * Computes the Kendall's Tau rank correlation matrix for the columns of
- * the input matrix.
- *
- * @param matrix matrix with columns representing variables to correlate
- * @return correlation matrix
- */
- public RealMatrix computeCorrelationMatrix(final RealMatrix matrix) {
- int nVars = matrix.getColumnDimension();
- RealMatrix outMatrix = new BlockRealMatrix(nVars, nVars);
- for (int i = 0; i < nVars; i++) {
- for (int j = 0; j < i; j++) {
- double corr = correlation(matrix.getColumn(i), matrix.getColumn(j));
- outMatrix.setEntry(i, j, corr);
- outMatrix.setEntry(j, i, corr);
- }
- outMatrix.setEntry(i, i, 1d);
- }
- return outMatrix;
- }
- /**
- * Computes the Kendall's Tau rank correlation matrix for the columns of
- * the input rectangular array. The columns of the array represent values
- * of variables to be correlated.
- *
- * @param matrix matrix with columns representing variables to correlate
- * @return correlation matrix
- */
- public RealMatrix computeCorrelationMatrix(final double[][] matrix) {
- return computeCorrelationMatrix(new BlockRealMatrix(matrix));
- }
- /**
- * Computes the Kendall's Tau rank correlation coefficient between the two arrays.
- *
- * @param xArray first data array
- * @param yArray second data array
- * @return Returns Kendall's Tau rank correlation coefficient for the two arrays
- * @throws DimensionMismatchException if the arrays lengths do not match
- */
- public double correlation(final double[] xArray, final double[] yArray)
- throws DimensionMismatchException {
- if (xArray.length != yArray.length) {
- throw new DimensionMismatchException(xArray.length, yArray.length);
- }
- final int n = xArray.length;
- final long numPairs = sum(n - 1);
- @SuppressWarnings("unchecked")
- Pair<Double, Double>[] pairs = new Pair[n];
- for (int i = 0; i < n; i++) {
- pairs[i] = new Pair<>(xArray[i], yArray[i]);
- }
- Arrays.sort(pairs, new Comparator<Pair<Double, Double>>() {
- /** {@inheritDoc} */
- @Override
- public int compare(Pair<Double, Double> pair1, Pair<Double, Double> pair2) {
- int compareFirst = pair1.getFirst().compareTo(pair2.getFirst());
- return compareFirst != 0 ? compareFirst : pair1.getSecond().compareTo(pair2.getSecond());
- }
- });
- long tiedXPairs = 0;
- long tiedXYPairs = 0;
- long consecutiveXTies = 1;
- long consecutiveXYTies = 1;
- Pair<Double, Double> prev = pairs[0];
- for (int i = 1; i < n; i++) {
- final Pair<Double, Double> curr = pairs[i];
- if (curr.getFirst().equals(prev.getFirst())) {
- consecutiveXTies++;
- if (curr.getSecond().equals(prev.getSecond())) {
- consecutiveXYTies++;
- } else {
- tiedXYPairs += sum(consecutiveXYTies - 1);
- consecutiveXYTies = 1;
- }
- } else {
- tiedXPairs += sum(consecutiveXTies - 1);
- consecutiveXTies = 1;
- tiedXYPairs += sum(consecutiveXYTies - 1);
- consecutiveXYTies = 1;
- }
- prev = curr;
- }
- tiedXPairs += sum(consecutiveXTies - 1);
- tiedXYPairs += sum(consecutiveXYTies - 1);
- long swaps = 0;
- @SuppressWarnings("unchecked")
- Pair<Double, Double>[] pairsDestination = new Pair[n];
- for (int segmentSize = 1; segmentSize < n; segmentSize <<= 1) {
- for (int offset = 0; offset < n; offset += 2 * segmentSize) {
- int i = offset;
- final int iEnd = JdkMath.min(i + segmentSize, n);
- int j = iEnd;
- final int jEnd = JdkMath.min(j + segmentSize, n);
- int copyLocation = offset;
- while (i < iEnd || j < jEnd) {
- if (i < iEnd) {
- if (j < jEnd) {
- if (pairs[i].getSecond().compareTo(pairs[j].getSecond()) <= 0) {
- pairsDestination[copyLocation] = pairs[i];
- i++;
- } else {
- pairsDestination[copyLocation] = pairs[j];
- j++;
- swaps += iEnd - i;
- }
- } else {
- pairsDestination[copyLocation] = pairs[i];
- i++;
- }
- } else {
- pairsDestination[copyLocation] = pairs[j];
- j++;
- }
- copyLocation++;
- }
- }
- final Pair<Double, Double>[] pairsTemp = pairs;
- pairs = pairsDestination;
- pairsDestination = pairsTemp;
- }
- long tiedYPairs = 0;
- long consecutiveYTies = 1;
- prev = pairs[0];
- for (int i = 1; i < n; i++) {
- final Pair<Double, Double> curr = pairs[i];
- if (curr.getSecond().equals(prev.getSecond())) {
- consecutiveYTies++;
- } else {
- tiedYPairs += sum(consecutiveYTies - 1);
- consecutiveYTies = 1;
- }
- prev = curr;
- }
- tiedYPairs += sum(consecutiveYTies - 1);
- final long concordantMinusDiscordant = numPairs - tiedXPairs - tiedYPairs + tiedXYPairs - 2 * swaps;
- final double nonTiedPairsMultiplied = (numPairs - tiedXPairs) * (double) (numPairs - tiedYPairs);
- return concordantMinusDiscordant / JdkMath.sqrt(nonTiedPairsMultiplied);
- }
- /**
- * Returns the sum of the number from 1 .. n according to Gauss' summation formula:
- * \[ \sum\limits_{k=1}^n k = \frac{n(n + 1)}{2} \]
- *
- * @param n the summation end
- * @return the sum of the number from 1 to n
- */
- private static long sum(long n) {
- return n * (n + 1) / 2L;
- }
- }