StandardDeviation.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math4.legacy.stat.descriptive.moment;
- import org.apache.commons.math4.legacy.exception.MathIllegalArgumentException;
- import org.apache.commons.math4.legacy.exception.NullArgumentException;
- import org.apache.commons.math4.legacy.stat.descriptive.AbstractStorelessUnivariateStatistic;
- import org.apache.commons.math4.core.jdkmath.JdkMath;
- /**
- * Computes the sample standard deviation. The standard deviation
- * is the positive square root of the variance. This implementation wraps a
- * {@link Variance} instance. The <code>isBiasCorrected</code> property of the
- * wrapped Variance instance is exposed, so that this class can be used to
- * compute both the "sample standard deviation" (the square root of the
- * bias-corrected "sample variance") or the "population standard deviation"
- * (the square root of the non-bias-corrected "population variance"). See
- * {@link Variance} for more information.
- * <p>
- * <strong>Note that this implementation is not synchronized.</strong> If
- * multiple threads access an instance of this class concurrently, and at least
- * one of the threads invokes the <code>increment()</code> or
- * <code>clear()</code> method, it must be synchronized externally.</p>
- */
- public class StandardDeviation extends AbstractStorelessUnivariateStatistic {
- /** Wrapped Variance instance. */
- private Variance variance;
- /**
- * Constructs a StandardDeviation. Sets the underlying {@link Variance}
- * instance's <code>isBiasCorrected</code> property to true.
- */
- public StandardDeviation() {
- variance = new Variance();
- }
- /**
- * Constructs a StandardDeviation from an external second moment.
- *
- * @param m2 the external moment
- */
- public StandardDeviation(final SecondMoment m2) {
- variance = new Variance(m2);
- }
- /**
- * Copy constructor, creates a new {@code StandardDeviation} identical
- * to the {@code original}.
- *
- * @param original the {@code StandardDeviation} instance to copy
- * @throws NullArgumentException if original is null
- */
- public StandardDeviation(StandardDeviation original) throws NullArgumentException {
- copy(original, this);
- }
- /**
- * Constructs a StandardDeviation with the specified value for the
- * <code>isBiasCorrected</code> property. If this property is set to
- * <code>true</code>, the {@link Variance} used in computing results will
- * use the bias-corrected, or "sample" formula. See {@link Variance} for
- * details.
- *
- * @param isBiasCorrected whether or not the variance computation will use
- * the bias-corrected formula
- */
- public StandardDeviation(boolean isBiasCorrected) {
- variance = new Variance(isBiasCorrected);
- }
- /**
- * Constructs a StandardDeviation with the specified value for the
- * <code>isBiasCorrected</code> property and the supplied external moment.
- * If <code>isBiasCorrected</code> is set to <code>true</code>, the
- * {@link Variance} used in computing results will use the bias-corrected,
- * or "sample" formula. See {@link Variance} for details.
- *
- * @param isBiasCorrected whether or not the variance computation will use
- * the bias-corrected formula
- * @param m2 the external moment
- */
- public StandardDeviation(boolean isBiasCorrected, SecondMoment m2) {
- variance = new Variance(isBiasCorrected, m2);
- }
- /**
- * {@inheritDoc}
- */
- @Override
- public void increment(final double d) {
- variance.increment(d);
- }
- /**
- * {@inheritDoc}
- */
- @Override
- public long getN() {
- return variance.getN();
- }
- /**
- * {@inheritDoc}
- */
- @Override
- public double getResult() {
- return JdkMath.sqrt(variance.getResult());
- }
- /**
- * {@inheritDoc}
- */
- @Override
- public void clear() {
- variance.clear();
- }
- /**
- * Returns the Standard Deviation of the entries in the input array, or
- * <code>Double.NaN</code> if the array is empty.
- * <p>
- * Returns 0 for a single-value (i.e. length = 1) sample.</p>
- * <p>
- * Throws <code>MathIllegalArgumentException</code> if the array is null.</p>
- * <p>
- * Does not change the internal state of the statistic.</p>
- *
- * @param values the input array
- * @return the standard deviation of the values or Double.NaN if length = 0
- * @throws MathIllegalArgumentException if the array is null
- */
- @Override
- public double evaluate(final double[] values) throws MathIllegalArgumentException {
- return JdkMath.sqrt(variance.evaluate(values));
- }
- /**
- * Returns the Standard Deviation of the entries in the specified portion of
- * the input array, or <code>Double.NaN</code> if the designated subarray
- * is empty.
- * <p>
- * Returns 0 for a single-value (i.e. length = 1) sample. </p>
- * <p>
- * Throws <code>MathIllegalArgumentException</code> if the array is null.</p>
- * <p>
- * Does not change the internal state of the statistic.</p>
- *
- * @param values the input array
- * @param begin index of the first array element to include
- * @param length the number of elements to include
- * @return the standard deviation of the values or Double.NaN if length = 0
- * @throws MathIllegalArgumentException if the array is null or the array index
- * parameters are not valid
- */
- @Override
- public double evaluate(final double[] values, final int begin, final int length)
- throws MathIllegalArgumentException {
- return JdkMath.sqrt(variance.evaluate(values, begin, length));
- }
- /**
- * Returns the Standard Deviation of the entries in the specified portion of
- * the input array, using the precomputed mean value. Returns
- * <code>Double.NaN</code> if the designated subarray is empty.
- * <p>
- * Returns 0 for a single-value (i.e. length = 1) sample.</p>
- * <p>
- * The formula used assumes that the supplied mean value is the arithmetic
- * mean of the sample data, not a known population parameter. This method
- * is supplied only to save computation when the mean has already been
- * computed.</p>
- * <p>
- * Throws <code>IllegalArgumentException</code> if the array is null.</p>
- * <p>
- * Does not change the internal state of the statistic.</p>
- *
- * @param values the input array
- * @param mean the precomputed mean value
- * @param begin index of the first array element to include
- * @param length the number of elements to include
- * @return the standard deviation of the values or Double.NaN if length = 0
- * @throws MathIllegalArgumentException if the array is null or the array index
- * parameters are not valid
- */
- public double evaluate(final double[] values, final double mean,
- final int begin, final int length) throws MathIllegalArgumentException {
- return JdkMath.sqrt(variance.evaluate(values, mean, begin, length));
- }
- /**
- * Returns the Standard Deviation of the entries in the input array, using
- * the precomputed mean value. Returns
- * <code>Double.NaN</code> if the designated subarray is empty.
- * <p>
- * Returns 0 for a single-value (i.e. length = 1) sample.</p>
- * <p>
- * The formula used assumes that the supplied mean value is the arithmetic
- * mean of the sample data, not a known population parameter. This method
- * is supplied only to save computation when the mean has already been
- * computed.</p>
- * <p>
- * Throws <code>MathIllegalArgumentException</code> if the array is null.</p>
- * <p>
- * Does not change the internal state of the statistic.</p>
- *
- * @param values the input array
- * @param mean the precomputed mean value
- * @return the standard deviation of the values or Double.NaN if length = 0
- * @throws MathIllegalArgumentException if the array is null
- */
- public double evaluate(final double[] values, final double mean)
- throws MathIllegalArgumentException {
- return JdkMath.sqrt(variance.evaluate(values, mean));
- }
- /**
- * @return Returns the isBiasCorrected.
- */
- public boolean isBiasCorrected() {
- return variance.isBiasCorrected();
- }
- /**
- * @param isBiasCorrected The isBiasCorrected to set.
- */
- public void setBiasCorrected(boolean isBiasCorrected) {
- variance.setBiasCorrected(isBiasCorrected);
- }
- /**
- * {@inheritDoc}
- */
- @Override
- public StandardDeviation copy() {
- StandardDeviation result = new StandardDeviation();
- // No try-catch or advertised exception because args are guaranteed non-null
- copy(this, result);
- return result;
- }
- /**
- * Copies source to dest.
- * <p>Neither source nor dest can be null.</p>
- *
- * @param source StandardDeviation to copy
- * @param dest StandardDeviation to copy to
- * @throws NullArgumentException if either source or dest is null
- */
- public static void copy(StandardDeviation source, StandardDeviation dest) throws NullArgumentException {
- NullArgumentException.check(source);
- NullArgumentException.check(dest);
- dest.variance = source.variance.copy();
- }
- }