DescriptiveStatistics.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math4.legacy.stat.descriptive;
- import java.lang.reflect.InvocationTargetException;
- import java.util.Arrays;
- import org.apache.commons.math4.legacy.exception.MathIllegalArgumentException;
- import org.apache.commons.math4.legacy.exception.MathIllegalStateException;
- import org.apache.commons.math4.legacy.exception.NullArgumentException;
- import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
- import org.apache.commons.math4.legacy.stat.descriptive.moment.GeometricMean;
- import org.apache.commons.math4.legacy.stat.descriptive.moment.Kurtosis;
- import org.apache.commons.math4.legacy.stat.descriptive.moment.Mean;
- import org.apache.commons.math4.legacy.stat.descriptive.moment.Skewness;
- import org.apache.commons.math4.legacy.stat.descriptive.moment.Variance;
- import org.apache.commons.math4.legacy.stat.descriptive.rank.Max;
- import org.apache.commons.math4.legacy.stat.descriptive.rank.Min;
- import org.apache.commons.math4.legacy.stat.descriptive.rank.Percentile;
- import org.apache.commons.math4.legacy.stat.descriptive.summary.Sum;
- import org.apache.commons.math4.legacy.stat.descriptive.summary.SumOfSquares;
- import org.apache.commons.math4.core.jdkmath.JdkMath;
- /**
- * Maintains a dataset of values of a single variable and computes descriptive
- * statistics based on stored data.
- * <p>
- * The {@link #getWindowSize() windowSize}
- * property sets a limit on the number of values that can be stored in the
- * dataset. The default value, INFINITE_WINDOW, puts no limit on the size of
- * the dataset. This value should be used with caution, as the backing store
- * will grow without bound in this case. For very large datasets,
- * {@link SummaryStatistics}, which does not store the dataset, should be used
- * instead of this class. If <code>windowSize</code> is not INFINITE_WINDOW and
- * more values are added than can be stored in the dataset, new values are
- * added in a "rolling" manner, with new values replacing the "oldest" values
- * in the dataset.
- * <p>
- * Note: this class is not threadsafe. Use
- * {@link SynchronizedDescriptiveStatistics} if concurrent access from multiple
- * threads is required.
- */
- public class DescriptiveStatistics implements StatisticalSummary {
- /**
- * Represents an infinite window size. When the {@link #getWindowSize()}
- * returns this value, there is no limit to the number of data values
- * that can be stored in the dataset.
- */
- public static final int INFINITE_WINDOW = -1;
- /** Name of the setQuantile method. */
- private static final String SET_QUANTILE_METHOD_NAME = "setQuantile";
- /** hold the window size. */
- private int windowSize = INFINITE_WINDOW;
- /** Stored data values. */
- private ResizableDoubleArray eDA = new ResizableDoubleArray();
- /** Mean statistic implementation - can be reset by setter. */
- private UnivariateStatistic meanImpl = new Mean();
- /** Geometric mean statistic implementation - can be reset by setter. */
- private UnivariateStatistic geometricMeanImpl = new GeometricMean();
- /** Kurtosis statistic implementation - can be reset by setter. */
- private UnivariateStatistic kurtosisImpl = new Kurtosis();
- /** Maximum statistic implementation - can be reset by setter. */
- private UnivariateStatistic maxImpl = new Max();
- /** Minimum statistic implementation - can be reset by setter. */
- private UnivariateStatistic minImpl = new Min();
- /** Percentile statistic implementation - can be reset by setter. */
- private UnivariateStatistic percentileImpl = new Percentile();
- /** Skewness statistic implementation - can be reset by setter. */
- private UnivariateStatistic skewnessImpl = new Skewness();
- /** Variance statistic implementation - can be reset by setter. */
- private UnivariateStatistic varianceImpl = new Variance();
- /** Sum of squares statistic implementation - can be reset by setter. */
- private UnivariateStatistic sumsqImpl = new SumOfSquares();
- /** Sum statistic implementation - can be reset by setter. */
- private UnivariateStatistic sumImpl = new Sum();
- /**
- * Construct a {@code DescriptiveStatistics} instance with an infinite
- * window.
- */
- public DescriptiveStatistics() {
- }
- /**
- * Construct a {@code DescriptiveStatistics} instance with the specified
- * window.
- *
- * @param window the window size.
- * @throws MathIllegalArgumentException if window size is less than 1 but
- * not equal to {@link #INFINITE_WINDOW}
- */
- public DescriptiveStatistics(int window) throws MathIllegalArgumentException {
- setWindowSize(window);
- }
- /**
- * Construct a {@code DescriptiveStatistics} instance with an infinite
- * window and the initial data values in {@code initialDoubleArray}.
- * If {@code initialDoubleArray} is {@code null}, then this constructor
- * corresponds to the {@link #DescriptiveStatistics() default constructor}.
- *
- * @param initialDoubleArray the initial double[].
- */
- public DescriptiveStatistics(double[] initialDoubleArray) {
- if (initialDoubleArray != null) {
- eDA = new ResizableDoubleArray(initialDoubleArray);
- }
- }
- /**
- * Construct a DescriptiveStatistics instance with an infinite window
- * and the initial data values in {@code initialDoubleArray}.
- * If {@code initialDoubleArray} is {@code null}, then this constructor
- * corresponds to {@link #DescriptiveStatistics() }.
- *
- * @param initialDoubleArray the initial Double[].
- */
- public DescriptiveStatistics(Double[] initialDoubleArray) {
- if (initialDoubleArray != null) {
- eDA = new ResizableDoubleArray(initialDoubleArray.length);
- for(double initialValue : initialDoubleArray) {
- eDA.addElement(initialValue);
- }
- }
- }
- /**
- * Copy constructor. Construct a new {@code DescriptiveStatistics} instance
- * that is a copy of {@code original}.
- *
- * @param original DescriptiveStatistics instance to copy
- * @throws NullArgumentException if original is null
- */
- public DescriptiveStatistics(DescriptiveStatistics original) throws NullArgumentException {
- copy(original, this);
- }
- /**
- * Adds the value to the dataset. If the dataset is at the maximum size
- * (i.e., the number of stored elements equals the currently configured
- * windowSize), the first (oldest) element in the dataset is discarded
- * to make room for the new value.
- *
- * @param v the value to be added
- */
- public void addValue(double v) {
- if (windowSize != INFINITE_WINDOW) {
- if (getN() == windowSize) {
- eDA.addElementRolling(v);
- } else if (getN() < windowSize) {
- eDA.addElement(v);
- }
- } else {
- eDA.addElement(v);
- }
- }
- /**
- * Removes the most recent value from the dataset.
- *
- * @throws MathIllegalStateException if there are no elements stored
- */
- public void removeMostRecentValue() throws MathIllegalStateException {
- try {
- eDA.discardMostRecentElements(1);
- } catch (MathIllegalArgumentException ex) {
- throw new MathIllegalStateException(LocalizedFormats.NO_DATA);
- }
- }
- /**
- * Replaces the most recently stored value with the given value.
- * There must be at least one element stored to call this method.
- *
- * @param v the value to replace the most recent stored value
- * @return replaced value
- * @throws MathIllegalStateException if there are no elements stored
- */
- public double replaceMostRecentValue(double v) throws MathIllegalStateException {
- return eDA.substituteMostRecentElement(v);
- }
- /**
- * Returns the <a href="http://www.xycoon.com/arithmetic_mean.htm">
- * arithmetic mean </a> of the available values.
- * @return The mean or Double.NaN if no values have been added.
- */
- @Override
- public double getMean() {
- return apply(meanImpl);
- }
- /**
- * Returns the <a href="http://www.xycoon.com/geometric_mean.htm">
- * geometric mean </a> of the available values.
- * <p>
- * See {@link GeometricMean} for details on the computing algorithm.</p>
- *
- * @return The geometricMean, Double.NaN if no values have been added,
- * or if any negative values have been added.
- */
- public double getGeometricMean() {
- return apply(geometricMeanImpl);
- }
- /**
- * Returns the (sample) variance of the available values.
- *
- * <p>This method returns the bias-corrected sample variance (using {@code n - 1} in
- * the denominator). Use {@link #getPopulationVariance()} for the non-bias-corrected
- * population variance.</p>
- *
- * @return The variance, Double.NaN if no values have been added
- * or 0.0 for a single value set.
- */
- @Override
- public double getVariance() {
- return apply(varianceImpl);
- }
- /**
- * Returns the <a href="http://en.wikibooks.org/wiki/Statistics/Summary/Variance">
- * population variance</a> of the available values.
- *
- * @return The population variance, Double.NaN if no values have been added,
- * or 0.0 for a single value set.
- */
- public double getPopulationVariance() {
- return apply(new Variance(false));
- }
- /**
- * Returns the standard deviation of the available values.
- * @return The standard deviation, Double.NaN if no values have been added
- * or 0.0 for a single value set.
- */
- @Override
- public double getStandardDeviation() {
- double stdDev = Double.NaN;
- if (getN() > 0) {
- if (getN() > 1) {
- stdDev = JdkMath.sqrt(getVariance());
- } else {
- stdDev = 0.0;
- }
- }
- return stdDev;
- }
- /**
- * Returns the quadratic mean, a.k.a.
- * <a href="http://mathworld.wolfram.com/Root-Mean-Square.html">
- * root-mean-square</a> of the available values
- * @return The quadratic mean or {@code Double.NaN} if no values
- * have been added.
- */
- public double getQuadraticMean() {
- final long n = getN();
- return n > 0 ? JdkMath.sqrt(getSumsq() / n) : Double.NaN;
- }
- /**
- * Returns the skewness of the available values. Skewness is a
- * measure of the asymmetry of a given distribution.
- *
- * @return The skewness, Double.NaN if less than 3 values have been added.
- */
- public double getSkewness() {
- return apply(skewnessImpl);
- }
- /**
- * Returns the Kurtosis of the available values. Kurtosis is a
- * measure of the "peakedness" of a distribution.
- *
- * @return The kurtosis, Double.NaN if less than 4 values have been added.
- */
- public double getKurtosis() {
- return apply(kurtosisImpl);
- }
- /**
- * Returns the maximum of the available values.
- * @return The max or Double.NaN if no values have been added.
- */
- @Override
- public double getMax() {
- return apply(maxImpl);
- }
- /**
- * Returns the minimum of the available values.
- * @return The min or Double.NaN if no values have been added.
- */
- @Override
- public double getMin() {
- return apply(minImpl);
- }
- /**
- * Returns the number of available values.
- * @return The number of available values
- */
- @Override
- public long getN() {
- return eDA.getNumElements();
- }
- /**
- * Returns the sum of the values that have been added to Univariate.
- * @return The sum or Double.NaN if no values have been added
- */
- @Override
- public double getSum() {
- return apply(sumImpl);
- }
- /**
- * Returns the sum of the squares of the available values.
- * @return The sum of the squares or Double.NaN if no
- * values have been added.
- */
- public double getSumsq() {
- return apply(sumsqImpl);
- }
- /**
- * Resets all statistics and storage.
- */
- public void clear() {
- eDA.clear();
- }
- /**
- * Returns the maximum number of values that can be stored in the
- * dataset, or INFINITE_WINDOW (-1) if there is no limit.
- *
- * @return The current window size or -1 if its Infinite.
- */
- public int getWindowSize() {
- return windowSize;
- }
- /**
- * WindowSize controls the number of values that contribute to the
- * reported statistics. For example, if windowSize is set to 3 and the
- * values {1,2,3,4,5} have been added <strong> in that order</strong> then
- * the <i>available values</i> are {3,4,5} and all reported statistics will
- * be based on these values. If {@code windowSize} is decreased as a result
- * of this call and there are more than the new value of elements in the
- * current dataset, values from the front of the array are discarded to
- * reduce the dataset to {@code windowSize} elements.
- *
- * @param windowSize sets the size of the window.
- * @throws MathIllegalArgumentException if window size is less than 1 but
- * not equal to {@link #INFINITE_WINDOW}
- */
- public void setWindowSize(int windowSize) throws MathIllegalArgumentException {
- if (windowSize < 1 && windowSize != INFINITE_WINDOW) {
- throw new MathIllegalArgumentException(
- LocalizedFormats.NOT_POSITIVE_WINDOW_SIZE, windowSize);
- }
- this.windowSize = windowSize;
- // We need to check to see if we need to discard elements
- // from the front of the array. If the windowSize is less than
- // the current number of elements.
- if (windowSize != INFINITE_WINDOW && windowSize < eDA.getNumElements()) {
- eDA.discardFrontElements(eDA.getNumElements() - windowSize);
- }
- }
- /**
- * Returns the current set of values in an array of double primitives.
- * The order of addition is preserved. The returned array is a fresh
- * copy of the underlying data -- i.e., it is not a reference to the
- * stored data.
- *
- * @return returns the current set of numbers in the order in which they
- * were added to this set
- */
- public double[] getValues() {
- return eDA.getElements();
- }
- /**
- * Returns the current set of values in an array of double primitives,
- * sorted in ascending order. The returned array is a fresh
- * copy of the underlying data -- i.e., it is not a reference to the
- * stored data.
- * @return returns the current set of
- * numbers sorted in ascending order
- */
- public double[] getSortedValues() {
- double[] sort = getValues();
- Arrays.sort(sort);
- return sort;
- }
- /**
- * Returns the element at the specified index.
- * @param index The Index of the element
- * @return return the element at the specified index
- */
- public double getElement(int index) {
- return eDA.getElement(index);
- }
- /**
- * Returns an estimate for the pth percentile of the stored values.
- * <p>
- * The implementation provided here follows the first estimation procedure presented
- * <a href="http://www.itl.nist.gov/div898/handbook/prc/section2/prc252.htm">here.</a>
- * </p><p>
- * <strong>Preconditions</strong>:<ul>
- * <li><code>0 < p ≤ 100</code> (otherwise an
- * <code>MathIllegalArgumentException</code> is thrown)</li>
- * <li>at least one value must be stored (returns <code>Double.NaN
- * </code> otherwise)</li>
- * </ul>
- *
- * @param p the requested percentile (scaled from 0 - 100)
- * @return An estimate for the pth percentile of the stored data
- * @throws MathIllegalStateException if percentile implementation has been
- * overridden and the supplied implementation does not support setQuantile
- * @throws MathIllegalArgumentException if p is not a valid quantile
- */
- public double getPercentile(double p) throws MathIllegalStateException, MathIllegalArgumentException {
- if (percentileImpl instanceof Percentile) {
- ((Percentile) percentileImpl).setQuantile(p);
- } else {
- try {
- percentileImpl.getClass().getMethod(SET_QUANTILE_METHOD_NAME,
- new Class[] {Double.TYPE}).invoke(percentileImpl,
- new Object[] {Double.valueOf(p)});
- } catch (NoSuchMethodException e1) { // Setter guard should prevent
- throw new MathIllegalStateException(
- LocalizedFormats.PERCENTILE_IMPLEMENTATION_UNSUPPORTED_METHOD,
- percentileImpl.getClass().getName(), SET_QUANTILE_METHOD_NAME);
- } catch (IllegalAccessException e2) {
- throw new MathIllegalStateException(
- LocalizedFormats.PERCENTILE_IMPLEMENTATION_CANNOT_ACCESS_METHOD,
- SET_QUANTILE_METHOD_NAME, percentileImpl.getClass().getName());
- } catch (InvocationTargetException e3) {
- throw new IllegalStateException(e3.getCause());
- }
- }
- return apply(percentileImpl);
- }
- /**
- * Generates a text report displaying univariate statistics from values
- * that have been added. Each statistic is displayed on a separate
- * line.
- *
- * @return String with line feeds displaying statistics
- */
- @Override
- public String toString() {
- StringBuilder outBuffer = new StringBuilder();
- String endl = "\n";
- outBuffer.append("DescriptiveStatistics:").append(endl);
- outBuffer.append("n: ").append(getN()).append(endl);
- outBuffer.append("min: ").append(getMin()).append(endl);
- outBuffer.append("max: ").append(getMax()).append(endl);
- outBuffer.append("mean: ").append(getMean()).append(endl);
- outBuffer.append("std dev: ").append(getStandardDeviation())
- .append(endl);
- try {
- // No catch for MIAE because actual parameter is valid below
- outBuffer.append("median: ").append(getPercentile(50)).append(endl);
- } catch (MathIllegalStateException ex) {
- outBuffer.append("median: unavailable").append(endl);
- }
- outBuffer.append("skewness: ").append(getSkewness()).append(endl);
- outBuffer.append("kurtosis: ").append(getKurtosis()).append(endl);
- return outBuffer.toString();
- }
- /**
- * Apply the given statistic to the data associated with this set of statistics.
- * @param stat the statistic to apply
- * @return the computed value of the statistic.
- */
- public double apply(UnivariateStatistic stat) {
- // No try-catch or advertised exception here because arguments are guaranteed valid
- return eDA.compute(stat);
- }
- // Implementation getters and setter
- /**
- * Returns the currently configured mean implementation.
- *
- * @return the UnivariateStatistic implementing the mean
- * @since 1.2
- */
- public synchronized UnivariateStatistic getMeanImpl() {
- return meanImpl;
- }
- /**
- * <p>Sets the implementation for the mean.</p>
- *
- * @param meanImpl the UnivariateStatistic instance to use
- * for computing the mean
- * @since 1.2
- */
- public synchronized void setMeanImpl(UnivariateStatistic meanImpl) {
- this.meanImpl = meanImpl;
- }
- /**
- * Returns the currently configured geometric mean implementation.
- *
- * @return the UnivariateStatistic implementing the geometric mean
- * @since 1.2
- */
- public synchronized UnivariateStatistic getGeometricMeanImpl() {
- return geometricMeanImpl;
- }
- /**
- * Sets the implementation for the geometric mean.
- *
- * @param geometricMeanImpl the UnivariateStatistic instance to use
- * for computing the geometric mean
- * @since 1.2
- */
- public synchronized void setGeometricMeanImpl(
- UnivariateStatistic geometricMeanImpl) {
- this.geometricMeanImpl = geometricMeanImpl;
- }
- /**
- * Returns the currently configured kurtosis implementation.
- *
- * @return the UnivariateStatistic implementing the kurtosis
- * @since 1.2
- */
- public synchronized UnivariateStatistic getKurtosisImpl() {
- return kurtosisImpl;
- }
- /**
- * Sets the implementation for the kurtosis.
- *
- * @param kurtosisImpl the UnivariateStatistic instance to use
- * for computing the kurtosis
- * @since 1.2
- */
- public synchronized void setKurtosisImpl(UnivariateStatistic kurtosisImpl) {
- this.kurtosisImpl = kurtosisImpl;
- }
- /**
- * Returns the currently configured maximum implementation.
- *
- * @return the UnivariateStatistic implementing the maximum
- * @since 1.2
- */
- public synchronized UnivariateStatistic getMaxImpl() {
- return maxImpl;
- }
- /**
- * Sets the implementation for the maximum.
- *
- * @param maxImpl the UnivariateStatistic instance to use
- * for computing the maximum
- * @since 1.2
- */
- public synchronized void setMaxImpl(UnivariateStatistic maxImpl) {
- this.maxImpl = maxImpl;
- }
- /**
- * Returns the currently configured minimum implementation.
- *
- * @return the UnivariateStatistic implementing the minimum
- * @since 1.2
- */
- public synchronized UnivariateStatistic getMinImpl() {
- return minImpl;
- }
- /**
- * Sets the implementation for the minimum.
- *
- * @param minImpl the UnivariateStatistic instance to use
- * for computing the minimum
- * @since 1.2
- */
- public synchronized void setMinImpl(UnivariateStatistic minImpl) {
- this.minImpl = minImpl;
- }
- /**
- * Returns the currently configured percentile implementation.
- *
- * @return the UnivariateStatistic implementing the percentile
- * @since 1.2
- */
- public synchronized UnivariateStatistic getPercentileImpl() {
- return percentileImpl;
- }
- /**
- * Sets the implementation to be used by {@link #getPercentile(double)}.
- * The supplied <code>UnivariateStatistic</code> must provide a
- * <code>setQuantile(double)</code> method; otherwise
- * <code>IllegalArgumentException</code> is thrown.
- *
- * @param percentileImpl the percentileImpl to set
- * @throws MathIllegalArgumentException if the supplied implementation does not
- * provide a <code>setQuantile</code> method
- * @since 1.2
- */
- public synchronized void setPercentileImpl(UnivariateStatistic percentileImpl)
- throws MathIllegalArgumentException {
- try {
- percentileImpl.getClass().getMethod(SET_QUANTILE_METHOD_NAME,
- new Class[] {Double.TYPE}).invoke(percentileImpl,
- new Object[] {Double.valueOf(50.0d)});
- } catch (NoSuchMethodException e1) {
- throw new MathIllegalArgumentException(
- LocalizedFormats.PERCENTILE_IMPLEMENTATION_UNSUPPORTED_METHOD,
- percentileImpl.getClass().getName(), SET_QUANTILE_METHOD_NAME);
- } catch (IllegalAccessException e2) {
- throw new MathIllegalArgumentException(
- LocalizedFormats.PERCENTILE_IMPLEMENTATION_CANNOT_ACCESS_METHOD,
- SET_QUANTILE_METHOD_NAME, percentileImpl.getClass().getName());
- } catch (InvocationTargetException e3) {
- throw new IllegalArgumentException(e3.getCause());
- }
- this.percentileImpl = percentileImpl;
- }
- /**
- * Returns the currently configured skewness implementation.
- *
- * @return the UnivariateStatistic implementing the skewness
- * @since 1.2
- */
- public synchronized UnivariateStatistic getSkewnessImpl() {
- return skewnessImpl;
- }
- /**
- * Sets the implementation for the skewness.
- *
- * @param skewnessImpl the UnivariateStatistic instance to use
- * for computing the skewness
- * @since 1.2
- */
- public synchronized void setSkewnessImpl(
- UnivariateStatistic skewnessImpl) {
- this.skewnessImpl = skewnessImpl;
- }
- /**
- * Returns the currently configured variance implementation.
- *
- * @return the UnivariateStatistic implementing the variance
- * @since 1.2
- */
- public synchronized UnivariateStatistic getVarianceImpl() {
- return varianceImpl;
- }
- /**
- * Sets the implementation for the variance.
- *
- * @param varianceImpl the UnivariateStatistic instance to use
- * for computing the variance
- * @since 1.2
- */
- public synchronized void setVarianceImpl(
- UnivariateStatistic varianceImpl) {
- this.varianceImpl = varianceImpl;
- }
- /**
- * Returns the currently configured sum of squares implementation.
- *
- * @return the UnivariateStatistic implementing the sum of squares
- * @since 1.2
- */
- public synchronized UnivariateStatistic getSumsqImpl() {
- return sumsqImpl;
- }
- /**
- * Sets the implementation for the sum of squares.
- *
- * @param sumsqImpl the UnivariateStatistic instance to use
- * for computing the sum of squares
- * @since 1.2
- */
- public synchronized void setSumsqImpl(UnivariateStatistic sumsqImpl) {
- this.sumsqImpl = sumsqImpl;
- }
- /**
- * Returns the currently configured sum implementation.
- *
- * @return the UnivariateStatistic implementing the sum
- * @since 1.2
- */
- public synchronized UnivariateStatistic getSumImpl() {
- return sumImpl;
- }
- /**
- * Sets the implementation for the sum.
- *
- * @param sumImpl the UnivariateStatistic instance to use
- * for computing the sum
- * @since 1.2
- */
- public synchronized void setSumImpl(UnivariateStatistic sumImpl) {
- this.sumImpl = sumImpl;
- }
- /**
- * Returns a copy of this DescriptiveStatistics instance with the same internal state.
- *
- * @return a copy of this
- */
- public DescriptiveStatistics copy() {
- DescriptiveStatistics result = new DescriptiveStatistics();
- // No try-catch or advertised exception because parms are guaranteed valid
- copy(this, result);
- return result;
- }
- /**
- * Copies source to dest.
- * <p>Neither source nor dest can be null.</p>
- *
- * @param source DescriptiveStatistics to copy
- * @param dest DescriptiveStatistics to copy to
- * @throws NullArgumentException if either source or dest is null
- */
- public static void copy(DescriptiveStatistics source, DescriptiveStatistics dest)
- throws NullArgumentException {
- NullArgumentException.check(source);
- NullArgumentException.check(dest);
- // Copy data and window size
- dest.eDA = source.eDA.copy();
- dest.windowSize = source.windowSize;
- // Copy implementations
- dest.maxImpl = source.maxImpl.copy();
- dest.meanImpl = source.meanImpl.copy();
- dest.minImpl = source.minImpl.copy();
- dest.sumImpl = source.sumImpl.copy();
- dest.varianceImpl = source.varianceImpl.copy();
- dest.sumsqImpl = source.sumsqImpl.copy();
- dest.geometricMeanImpl = source.geometricMeanImpl.copy();
- dest.kurtosisImpl = source.kurtosisImpl;
- dest.skewnessImpl = source.skewnessImpl;
- dest.percentileImpl = source.percentileImpl;
- }
- }