OneWayAnova.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math4.legacy.stat.inference;
- import java.util.ArrayList;
- import java.util.Collection;
- import org.apache.commons.statistics.distribution.FDistribution;
- import org.apache.commons.math4.legacy.exception.ConvergenceException;
- import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
- import org.apache.commons.math4.legacy.exception.MaxCountExceededException;
- import org.apache.commons.math4.legacy.exception.NullArgumentException;
- import org.apache.commons.math4.legacy.exception.OutOfRangeException;
- import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
- import org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics;
- /**
- * Implements one-way ANOVA (analysis of variance) statistics.
- *
- * <p> Tests for differences between two or more categories of univariate data
- * (for example, the body mass index of accountants, lawyers, doctors and
- * computer programmers). When two categories are given, this is equivalent to
- * the {@link org.apache.commons.math4.legacy.stat.inference.TTest}.
- * </p><p>
- * Uses the {@link org.apache.commons.statistics.distribution.FDistribution
- * commons-math F Distribution implementation} to estimate exact p-values.</p>
- * <p>This implementation is based on a description at
- * http://faculty.vassar.edu/lowry/ch13pt1.html</p>
- * <pre>
- * Abbreviations: bg = between groups,
- * wg = within groups,
- * ss = sum squared deviations
- * </pre>
- *
- * @since 1.2
- */
- public class OneWayAnova {
- /**
- * Default constructor.
- */
- public OneWayAnova() {
- }
- /**
- * Computes the ANOVA F-value for a collection of <code>double[]</code>
- * arrays.
- *
- * <p><strong>Preconditions</strong>: <ul>
- * <li>The categoryData <code>Collection</code> must contain
- * <code>double[]</code> arrays.</li>
- * <li> There must be at least two <code>double[]</code> arrays in the
- * <code>categoryData</code> collection and each of these arrays must
- * contain at least two values.</li></ul><p>
- * This implementation computes the F statistic using the definitional
- * formula<pre>
- * F = msbg/mswg</pre>
- * where<pre>
- * msbg = between group mean square
- * mswg = within group mean square</pre>
- * are as defined <a href="http://faculty.vassar.edu/lowry/ch13pt1.html">
- * here</a>
- *
- * @param categoryData <code>Collection</code> of <code>double[]</code>
- * arrays each containing data for one category
- * @return Fvalue
- * @throws NullArgumentException if <code>categoryData</code> is <code>null</code>
- * @throws DimensionMismatchException if the length of the <code>categoryData</code>
- * array is less than 2 or a contained <code>double[]</code> array does not have
- * at least two values
- */
- public double anovaFValue(final Collection<double[]> categoryData)
- throws NullArgumentException, DimensionMismatchException {
- AnovaStats a = anovaStats(categoryData);
- return a.f;
- }
- /**
- * Computes the ANOVA P-value for a collection of <code>double[]</code>
- * arrays.
- *
- * <p><strong>Preconditions</strong>: <ul>
- * <li>The categoryData <code>Collection</code> must contain
- * <code>double[]</code> arrays.</li>
- * <li> There must be at least two <code>double[]</code> arrays in the
- * <code>categoryData</code> collection and each of these arrays must
- * contain at least two values.</li></ul><p>
- * This implementation uses the
- * {@link org.apache.commons.statistics.distribution.FDistribution
- * commons-math F Distribution implementation} to estimate the exact
- * p-value, using the formula<pre>
- * p = survivalProbability(F)</pre>
- * where <code>F</code> is the F value and <code>survivalProbability = 1 - cumulativeProbability</code>
- * is the commons-statistics implementation of the F distribution.
- *
- * @param categoryData <code>Collection</code> of <code>double[]</code>
- * arrays each containing data for one category
- * @return Pvalue
- * @throws NullArgumentException if <code>categoryData</code> is <code>null</code>
- * @throws DimensionMismatchException if the length of the <code>categoryData</code>
- * array is less than 2 or a contained <code>double[]</code> array does not have
- * at least two values
- * @throws ConvergenceException if the p-value can not be computed due to a convergence error
- * @throws MaxCountExceededException if the maximum number of iterations is exceeded
- */
- public double anovaPValue(final Collection<double[]> categoryData)
- throws NullArgumentException, DimensionMismatchException,
- ConvergenceException, MaxCountExceededException {
- final AnovaStats a = anovaStats(categoryData);
- // No try-catch or advertised exception because args are valid
- // pass a null rng to avoid unneeded overhead as we will not sample from this distribution
- final FDistribution fdist = FDistribution.of(a.dfbg, a.dfwg);
- return fdist.survivalProbability(a.f);
- }
- /**
- * Computes the ANOVA P-value for a collection of {@link SummaryStatistics}.
- *
- * <p><strong>Preconditions</strong>: <ul>
- * <li>The categoryData <code>Collection</code> must contain
- * {@link SummaryStatistics}.</li>
- * <li> There must be at least two {@link SummaryStatistics} in the
- * <code>categoryData</code> collection and each of these statistics must
- * contain at least two values.</li></ul><p>
- * This implementation uses the
- * {@link org.apache.commons.statistics.distribution.FDistribution
- * commons-math F Distribution implementation} to estimate the exact
- * p-value, using the formula<pre>
- * p = survivalProbability(F)</pre>
- * where <code>F</code> is the F value and <code>survivalProbability = 1 - cumulativeProbability</code>
- * is the commons-statistics implementation of the F distribution.
- *
- * @param categoryData <code>Collection</code> of {@link SummaryStatistics}
- * each containing data for one category
- * @param allowOneElementData if true, allow computation for one catagory
- * only or for one data element per category
- * @return Pvalue
- * @throws NullArgumentException if <code>categoryData</code> is <code>null</code>
- * @throws DimensionMismatchException if the length of the <code>categoryData</code>
- * array is less than 2 or a contained {@link SummaryStatistics} does not have
- * at least two values
- * @throws ConvergenceException if the p-value can not be computed due to a convergence error
- * @throws MaxCountExceededException if the maximum number of iterations is exceeded
- * @since 3.2
- */
- public double anovaPValue(final Collection<SummaryStatistics> categoryData,
- final boolean allowOneElementData)
- throws NullArgumentException, DimensionMismatchException,
- ConvergenceException, MaxCountExceededException {
- final AnovaStats a = anovaStats(categoryData, allowOneElementData);
- // pass a null rng to avoid unneeded overhead as we will not sample from this distribution
- final FDistribution fdist = FDistribution.of(a.dfbg, a.dfwg);
- return fdist.survivalProbability(a.f);
- }
- /**
- * This method calls the method that actually does the calculations (except
- * P-value).
- *
- * @param categoryData
- * <code>Collection</code> of <code>double[]</code> arrays each
- * containing data for one category
- * @return computed AnovaStats
- * @throws NullArgumentException
- * if <code>categoryData</code> is <code>null</code>
- * @throws DimensionMismatchException
- * if the length of the <code>categoryData</code> array is less
- * than 2 or a contained <code>double[]</code> array does not
- * contain at least two values
- */
- private AnovaStats anovaStats(final Collection<double[]> categoryData)
- throws NullArgumentException, DimensionMismatchException {
- NullArgumentException.check(categoryData);
- final Collection<SummaryStatistics> categoryDataSummaryStatistics =
- new ArrayList<>(categoryData.size());
- // convert arrays to SummaryStatistics
- for (final double[] data : categoryData) {
- final SummaryStatistics dataSummaryStatistics = new SummaryStatistics();
- categoryDataSummaryStatistics.add(dataSummaryStatistics);
- for (final double val : data) {
- dataSummaryStatistics.addValue(val);
- }
- }
- return anovaStats(categoryDataSummaryStatistics, false);
- }
- /**
- * Performs an ANOVA test, evaluating the null hypothesis that there
- * is no difference among the means of the data categories.
- *
- * <p><strong>Preconditions</strong>: <ul>
- * <li>The categoryData <code>Collection</code> must contain
- * <code>double[]</code> arrays.</li>
- * <li> There must be at least two <code>double[]</code> arrays in the
- * <code>categoryData</code> collection and each of these arrays must
- * contain at least two values.</li>
- * <li>alpha must be strictly greater than 0 and less than or equal to 0.5.
- * </li></ul><p>
- * This implementation uses the
- * {@link org.apache.commons.statistics.distribution.FDistribution
- * commons-math F Distribution implementation} to estimate the exact
- * p-value, using the formula<pre>
- * p = survivalProbability(F)</pre>
- * where <code>F</code> is the F value and <code>survivalProbability = 1 - cumulativeProbability</code>
- * is the commons-statistics implementation of the F distribution.
- * <p>True is returned iff the estimated p-value is less than alpha.</p>
- *
- * @param categoryData <code>Collection</code> of <code>double[]</code>
- * arrays each containing data for one category
- * @param alpha significance level of the test
- * @return true if the null hypothesis can be rejected with
- * confidence 1 - alpha
- * @throws NullArgumentException if <code>categoryData</code> is <code>null</code>
- * @throws DimensionMismatchException if the length of the <code>categoryData</code>
- * array is less than 2 or a contained <code>double[]</code> array does not have
- * at least two values
- * @throws OutOfRangeException if <code>alpha</code> is not in the range (0, 0.5]
- * @throws ConvergenceException if the p-value can not be computed due to a convergence error
- * @throws MaxCountExceededException if the maximum number of iterations is exceeded
- */
- public boolean anovaTest(final Collection<double[]> categoryData,
- final double alpha)
- throws NullArgumentException, DimensionMismatchException,
- OutOfRangeException, ConvergenceException, MaxCountExceededException {
- if (alpha <= 0 || alpha > 0.5) {
- throw new OutOfRangeException(
- LocalizedFormats.OUT_OF_BOUND_SIGNIFICANCE_LEVEL,
- alpha, 0, 0.5);
- }
- return anovaPValue(categoryData) < alpha;
- }
- /**
- * This method actually does the calculations (except P-value).
- *
- * @param categoryData <code>Collection</code> of <code>double[]</code>
- * arrays each containing data for one category
- * @param allowOneElementData if true, allow computation for one catagory
- * only or for one data element per category
- * @return computed AnovaStats
- * @throws NullArgumentException if <code>categoryData</code> is <code>null</code>
- * @throws DimensionMismatchException if <code>allowOneElementData</code> is false and the number of
- * categories is less than 2 or a contained SummaryStatistics does not contain
- * at least two values
- */
- private AnovaStats anovaStats(final Collection<SummaryStatistics> categoryData,
- final boolean allowOneElementData)
- throws NullArgumentException, DimensionMismatchException {
- NullArgumentException.check(categoryData);
- if (!allowOneElementData) {
- // check if we have enough categories
- if (categoryData.size() < 2) {
- throw new DimensionMismatchException(LocalizedFormats.TWO_OR_MORE_CATEGORIES_REQUIRED,
- categoryData.size(), 2);
- }
- // check if each category has enough data
- for (final SummaryStatistics array : categoryData) {
- if (array.getN() <= 1) {
- throw new DimensionMismatchException(LocalizedFormats.TWO_OR_MORE_VALUES_IN_CATEGORY_REQUIRED,
- (int) array.getN(), 2);
- }
- }
- }
- int dfwg = 0;
- double sswg = 0;
- double totsum = 0;
- double totsumsq = 0;
- int totnum = 0;
- for (final SummaryStatistics data : categoryData) {
- final double sum = data.getSum();
- final double sumsq = data.getSumsq();
- final int num = (int) data.getN();
- totnum += num;
- totsum += sum;
- totsumsq += sumsq;
- dfwg += num - 1;
- final double ss = sumsq - ((sum * sum) / num);
- sswg += ss;
- }
- final double sst = totsumsq - ((totsum * totsum) / totnum);
- final double ssbg = sst - sswg;
- final int dfbg = categoryData.size() - 1;
- final double msbg = ssbg / dfbg;
- final double mswg = sswg / dfwg;
- final double f = msbg / mswg;
- return new AnovaStats(dfbg, dfwg, f);
- }
- /**
- Convenience class to pass dfbg,dfwg,F values around within OneWayAnova.
- No get/set methods provided.
- */
- private static final class AnovaStats {
- /** Degrees of freedom in numerator (between groups). */
- private final int dfbg;
- /** Degrees of freedom in denominator (within groups). */
- private final int dfwg;
- /** Statistic. */
- private final double f;
- /**
- * Constructor.
- * @param dfbg degrees of freedom in numerator (between groups)
- * @param dfwg degrees of freedom in denominator (within groups)
- * @param f statistic
- */
- private AnovaStats(int dfbg, int dfwg, double f) {
- this.dfbg = dfbg;
- this.dfwg = dfwg;
- this.f = f;
- }
- }
- }