WilcoxonSignedRankTest.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math4.legacy.stat.inference;
- import org.apache.commons.statistics.distribution.NormalDistribution;
- import org.apache.commons.math4.legacy.exception.ConvergenceException;
- import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
- import org.apache.commons.math4.legacy.exception.MaxCountExceededException;
- import org.apache.commons.math4.legacy.exception.NoDataException;
- import org.apache.commons.math4.legacy.exception.NullArgumentException;
- import org.apache.commons.math4.legacy.exception.NumberIsTooLargeException;
- import org.apache.commons.math4.legacy.stat.ranking.NaNStrategy;
- import org.apache.commons.math4.legacy.stat.ranking.NaturalRanking;
- import org.apache.commons.math4.legacy.stat.ranking.TiesStrategy;
- import org.apache.commons.math4.core.jdkmath.JdkMath;
- /**
- * An implementation of the Wilcoxon signed-rank test.
- *
- */
- public class WilcoxonSignedRankTest {
- /** Ranking algorithm. */
- private NaturalRanking naturalRanking;
- /**
- * Create a test instance where NaN's are left in place and ties get
- * the average of applicable ranks. Use this unless you are very sure
- * of what you are doing.
- */
- public WilcoxonSignedRankTest() {
- naturalRanking = new NaturalRanking(NaNStrategy.FIXED,
- TiesStrategy.AVERAGE);
- }
- /**
- * Create a test instance using the given strategies for NaN's and ties.
- * Only use this if you are sure of what you are doing.
- *
- * @param nanStrategy
- * specifies the strategy that should be used for Double.NaN's
- * @param tiesStrategy
- * specifies the strategy that should be used for ties
- */
- public WilcoxonSignedRankTest(final NaNStrategy nanStrategy,
- final TiesStrategy tiesStrategy) {
- naturalRanking = new NaturalRanking(nanStrategy, tiesStrategy);
- }
- /**
- * Ensures that the provided arrays fulfills the assumptions.
- *
- * @param x first sample
- * @param y second sample
- * @throws NullArgumentException if {@code x} or {@code y} are {@code null}.
- * @throws NoDataException if {@code x} or {@code y} are zero-length.
- * @throws DimensionMismatchException if {@code x} and {@code y} do not
- * have the same length.
- */
- private void ensureDataConformance(final double[] x, final double[] y)
- throws NullArgumentException, NoDataException, DimensionMismatchException {
- if (x == null ||
- y == null) {
- throw new NullArgumentException();
- }
- if (x.length == 0 ||
- y.length == 0) {
- throw new NoDataException();
- }
- if (y.length != x.length) {
- throw new DimensionMismatchException(y.length, x.length);
- }
- }
- /**
- * Calculates y[i] - x[i] for all i.
- *
- * @param x first sample
- * @param y second sample
- * @return z = y - x
- */
- private double[] calculateDifferences(final double[] x, final double[] y) {
- final double[] z = new double[x.length];
- for (int i = 0; i < x.length; ++i) {
- z[i] = y[i] - x[i];
- }
- return z;
- }
- /**
- * Calculates |z[i]| for all i.
- *
- * @param z sample
- * @return |z|
- * @throws NullArgumentException if {@code z} is {@code null}
- * @throws NoDataException if {@code z} is zero-length.
- */
- private double[] calculateAbsoluteDifferences(final double[] z)
- throws NullArgumentException, NoDataException {
- if (z == null) {
- throw new NullArgumentException();
- }
- if (z.length == 0) {
- throw new NoDataException();
- }
- final double[] zAbs = new double[z.length];
- for (int i = 0; i < z.length; ++i) {
- zAbs[i] = JdkMath.abs(z[i]);
- }
- return zAbs;
- }
- /**
- * Computes the <a
- * href="http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test">
- * Wilcoxon signed ranked statistic</a> comparing mean for two related
- * samples or repeated measurements on a single sample.
- * <p>
- * This statistic can be used to perform a Wilcoxon signed ranked test
- * evaluating the null hypothesis that the two related samples or repeated
- * measurements on a single sample has equal mean.
- * </p>
- * <p>
- * Let X<sub>i</sub> denote the i'th individual of the first sample and
- * Y<sub>i</sub> the related i'th individual in the second sample. Let
- * Z<sub>i</sub> = Y<sub>i</sub> - X<sub>i</sub>.
- * </p>
- * <p>
- * <strong>Preconditions</strong>:
- * <ul>
- * <li>The differences Z<sub>i</sub> must be independent.</li>
- * <li>Each Z<sub>i</sub> comes from a continuous population (they must be
- * identical) and is symmetric about a common median.</li>
- * <li>The values that X<sub>i</sub> and Y<sub>i</sub> represent are
- * ordered, so the comparisons greater than, less than, and equal to are
- * meaningful.</li>
- * </ul>
- *
- * @param x the first sample
- * @param y the second sample
- * @return wilcoxonSignedRank statistic (the larger of W+ and W-)
- * @throws NullArgumentException if {@code x} or {@code y} are {@code null}.
- * @throws NoDataException if {@code x} or {@code y} are zero-length.
- * @throws DimensionMismatchException if {@code x} and {@code y} do not
- * have the same length.
- */
- public double wilcoxonSignedRank(final double[] x, final double[] y)
- throws NullArgumentException, NoDataException, DimensionMismatchException {
- ensureDataConformance(x, y);
- // throws IllegalArgumentException if x and y are not correctly
- // specified
- final double[] z = calculateDifferences(x, y);
- final double[] zAbs = calculateAbsoluteDifferences(z);
- final double[] ranks = naturalRanking.rank(zAbs);
- double wPlus = 0;
- for (int i = 0; i < z.length; ++i) {
- if (z[i] > 0) {
- wPlus += ranks[i];
- }
- }
- final int n = x.length;
- final double wMinus = (((double) (n * (n + 1))) / 2.0) - wPlus;
- return JdkMath.max(wPlus, wMinus);
- }
- /**
- * Algorithm inspired by.
- * http://www.fon.hum.uva.nl/Service/Statistics/Signed_Rank_Algorihms.html#C
- * by Rob van Son, Institute of Phonetic Sciences & IFOTT,
- * University of Amsterdam
- *
- * @param wMax largest Wilcoxon signed rank value
- * @param n number of subjects (corresponding to x.length)
- * @return two-sided exact p-value
- */
- private double calculateExactPValue(final double wMax, final int n) {
- // Total number of outcomes (equal to 2^N but a lot faster)
- final int m = 1 << n;
- int largerRankSums = 0;
- for (int i = 0; i < m; ++i) {
- int rankSum = 0;
- // Generate all possible rank sums
- for (int j = 0; j < n; ++j) {
- // (i >> j) & 1 extract i's j-th bit from the right
- if (((i >> j) & 1) == 1) {
- rankSum += j + 1;
- }
- }
- if (rankSum >= wMax) {
- ++largerRankSums;
- }
- }
- /*
- * largerRankSums / m gives the one-sided p-value, so it's multiplied
- * with 2 to get the two-sided p-value
- */
- return 2 * ((double) largerRankSums) / ((double) m);
- }
- /**
- * @param wMin smallest Wilcoxon signed rank value
- * @param n number of subjects (corresponding to x.length)
- * @return two-sided asymptotic p-value
- */
- private double calculateAsymptoticPValue(final double wMin, final int n) {
- final double es = (double) (n * (n + 1)) / 4.0;
- /* Same as (but saves computations):
- * final double VarW = ((double) (N * (N + 1) * (2*N + 1))) / 24;
- */
- final double varS = es * ((double) (2 * n + 1) / 6.0);
- // - 0.5 is a continuity correction
- final double z = (wMin - es - 0.5) / JdkMath.sqrt(varS);
- // No try-catch or advertised exception because args are valid
- // pass a null rng to avoid unneeded overhead as we will not sample from this distribution
- final NormalDistribution standardNormal = NormalDistribution.of(0, 1);
- return 2*standardNormal.cumulativeProbability(z);
- }
- /**
- * Returns the <i>observed significance level</i>, or <a href=
- * "http://www.cas.lancs.ac.uk/glossary_v1.1/hyptest.html#pvalue">
- * p-value</a>, associated with a <a
- * href="http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test">
- * Wilcoxon signed ranked statistic</a> comparing mean for two related
- * samples or repeated measurements on a single sample.
- * <p>
- * Let X<sub>i</sub> denote the i'th individual of the first sample and
- * Y<sub>i</sub> the related i'th individual in the second sample. Let
- * Z<sub>i</sub> = Y<sub>i</sub> - X<sub>i</sub>.
- * </p>
- * <p>
- * <strong>Preconditions</strong>:
- * <ul>
- * <li>The differences Z<sub>i</sub> must be independent.</li>
- * <li>Each Z<sub>i</sub> comes from a continuous population (they must be
- * identical) and is symmetric about a common median.</li>
- * <li>The values that X<sub>i</sub> and Y<sub>i</sub> represent are
- * ordered, so the comparisons greater than, less than, and equal to are
- * meaningful.</li>
- * </ul>
- *
- * @param x the first sample
- * @param y the second sample
- * @param exactPValue
- * if the exact p-value is wanted (only works for x.length >= 30,
- * if true and x.length < 30, this is ignored because
- * calculations may take too long)
- * @return p-value
- * @throws NullArgumentException if {@code x} or {@code y} are {@code null}.
- * @throws NoDataException if {@code x} or {@code y} are zero-length.
- * @throws DimensionMismatchException if {@code x} and {@code y} do not
- * have the same length.
- * @throws NumberIsTooLargeException if {@code exactPValue} is {@code true}
- * and {@code x.length} > 30
- * @throws ConvergenceException if the p-value can not be computed due to
- * a convergence error
- * @throws MaxCountExceededException if the maximum number of iterations
- * is exceeded
- */
- public double wilcoxonSignedRankTest(final double[] x, final double[] y,
- final boolean exactPValue)
- throws NullArgumentException, NoDataException, DimensionMismatchException,
- NumberIsTooLargeException, ConvergenceException, MaxCountExceededException {
- ensureDataConformance(x, y);
- final int n = x.length;
- final double wMax = wilcoxonSignedRank(x, y);
- if (exactPValue && n > 30) {
- throw new NumberIsTooLargeException(n, 30, true);
- }
- if (exactPValue) {
- return calculateExactPValue(wMax, n);
- } else {
- final double wMin = ( (double)(n*(n+1)) / 2.0 ) - wMax;
- return calculateAsymptoticPValue(wMin, n);
- }
- }
- }