001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017package org.apache.commons.math4.legacy.linear;
018
019import org.apache.commons.math4.legacy.exception.NumberIsTooLargeException;
020import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
021import org.apache.commons.math4.core.jdkmath.JdkMath;
022import org.apache.commons.numbers.core.Precision;
023
024/**
025 * Calculates the compact Singular Value Decomposition of a matrix.
026 * <p>
027 * The Singular Value Decomposition of matrix A is a set of three matrices: U,
028 * &Sigma; and V such that A = U &times; &Sigma; &times; V<sup>T</sup>. Let A be
029 * a m &times; n matrix, then U is a m &times; p orthogonal matrix, &Sigma; is a
030 * p &times; p diagonal matrix with positive or null elements, V is a p &times;
031 * n orthogonal matrix (hence V<sup>T</sup> is also orthogonal) where
032 * p=min(m,n).
033 * </p>
034 * <p>This class is similar to the class with similar name from the
035 * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> library, with the
036 * following changes:</p>
037 * <ul>
038 *   <li>the {@code norm2} method which has been renamed as {@link #getNorm()
039 *   getNorm},</li>
040 *   <li>the {@code cond} method which has been renamed as {@link
041 *   #getConditionNumber() getConditionNumber},</li>
042 *   <li>the {@code rank} method which has been renamed as {@link #getRank()
043 *   getRank},</li>
044 *   <li>a {@link #getUT() getUT} method has been added,</li>
045 *   <li>a {@link #getVT() getVT} method has been added,</li>
046 *   <li>a {@link #getSolver() getSolver} method has been added,</li>
047 *   <li>a {@link #getCovariance(double) getCovariance} method has been added.</li>
048 * </ul>
049 * @see <a href="http://mathworld.wolfram.com/SingularValueDecomposition.html">MathWorld</a>
050 * @see <a href="http://en.wikipedia.org/wiki/Singular_value_decomposition">Wikipedia</a>
051 * @since 2.0 (changed to concrete class in 3.0)
052 */
053public class SingularValueDecomposition {
054    /** Relative threshold for small singular values. */
055    private static final double EPS = 0x1.0p-52;
056    /** Absolute threshold for small singular values. */
057    private static final double TINY = 0x1.0p-966;
058    /** Computed singular values. */
059    private final double[] singularValues;
060    /** max(row dimension, column dimension). */
061    private final int m;
062    /** min(row dimension, column dimension). */
063    private final int n;
064    /** Indicator for transposed matrix. */
065    private final boolean transposed;
066    /** Cached value of U matrix. */
067    private final RealMatrix cachedU;
068    /** Cached value of transposed U matrix. */
069    private RealMatrix cachedUt;
070    /** Cached value of S (diagonal) matrix. */
071    private RealMatrix cachedS;
072    /** Cached value of V matrix. */
073    private final RealMatrix cachedV;
074    /** Cached value of transposed V matrix. */
075    private RealMatrix cachedVt;
076    /**
077     * Tolerance value for small singular values, calculated once we have
078     * populated "singularValues".
079     **/
080    private final double tol;
081
082    /**
083     * Calculates the compact Singular Value Decomposition of the given matrix.
084     *
085     * @param matrix Matrix to decompose.
086     */
087    public SingularValueDecomposition(final RealMatrix matrix) {
088        final double[][] A;
089
090         // "m" is always the largest dimension.
091        if (matrix.getRowDimension() < matrix.getColumnDimension()) {
092            transposed = true;
093            A = matrix.transpose().getData();
094            m = matrix.getColumnDimension();
095            n = matrix.getRowDimension();
096        } else {
097            transposed = false;
098            A = matrix.getData();
099            m = matrix.getRowDimension();
100            n = matrix.getColumnDimension();
101        }
102
103        singularValues = new double[n];
104        final double[][] U = new double[m][n];
105        final double[][] V = new double[n][n];
106        final double[] e = new double[n];
107        final double[] work = new double[m];
108        // Reduce A to bidiagonal form, storing the diagonal elements
109        // in s and the super-diagonal elements in e.
110        final int nct = JdkMath.min(m - 1, n);
111        final int nrt = JdkMath.max(0, n - 2);
112        for (int k = 0; k < JdkMath.max(nct, nrt); k++) {
113            if (k < nct) {
114                // Compute the transformation for the k-th column and
115                // place the k-th diagonal in s[k].
116                // Compute 2-norm of k-th column without under/overflow.
117                singularValues[k] = 0;
118                for (int i = k; i < m; i++) {
119                    singularValues[k] = JdkMath.hypot(singularValues[k], A[i][k]);
120                }
121                if (singularValues[k] != 0) {
122                    if (A[k][k] < 0) {
123                        singularValues[k] = -singularValues[k];
124                    }
125                    for (int i = k; i < m; i++) {
126                        A[i][k] /= singularValues[k];
127                    }
128                    A[k][k] += 1;
129                }
130                singularValues[k] = -singularValues[k];
131            }
132            for (int j = k + 1; j < n; j++) {
133                if (k < nct &&
134                    singularValues[k] != 0) {
135                    // Apply the transformation.
136                    double t = 0;
137                    for (int i = k; i < m; i++) {
138                        t += A[i][k] * A[i][j];
139                    }
140                    t = -t / A[k][k];
141                    for (int i = k; i < m; i++) {
142                        A[i][j] += t * A[i][k];
143                    }
144                }
145                // Place the k-th row of A into e for the
146                // subsequent calculation of the row transformation.
147                e[j] = A[k][j];
148            }
149            if (k < nct) {
150                // Place the transformation in U for subsequent back
151                // multiplication.
152                for (int i = k; i < m; i++) {
153                    U[i][k] = A[i][k];
154                }
155            }
156            if (k < nrt) {
157                // Compute the k-th row transformation and place the
158                // k-th super-diagonal in e[k].
159                // Compute 2-norm without under/overflow.
160                e[k] = 0;
161                for (int i = k + 1; i < n; i++) {
162                    e[k] = JdkMath.hypot(e[k], e[i]);
163                }
164                if (e[k] != 0) {
165                    if (e[k + 1] < 0) {
166                        e[k] = -e[k];
167                    }
168                    for (int i = k + 1; i < n; i++) {
169                        e[i] /= e[k];
170                    }
171                    e[k + 1] += 1;
172                }
173                e[k] = -e[k];
174                if (k + 1 < m &&
175                    e[k] != 0) {
176                    // Apply the transformation.
177                    for (int i = k + 1; i < m; i++) {
178                        work[i] = 0;
179                    }
180                    for (int j = k + 1; j < n; j++) {
181                        for (int i = k + 1; i < m; i++) {
182                            work[i] += e[j] * A[i][j];
183                        }
184                    }
185                    for (int j = k + 1; j < n; j++) {
186                        final double t = -e[j] / e[k + 1];
187                        for (int i = k + 1; i < m; i++) {
188                            A[i][j] += t * work[i];
189                        }
190                    }
191                }
192
193                // Place the transformation in V for subsequent
194                // back multiplication.
195                for (int i = k + 1; i < n; i++) {
196                    V[i][k] = e[i];
197                }
198            }
199        }
200        // Set up the final bidiagonal matrix or order p.
201        int p = n;
202        if (nct < n) {
203            singularValues[nct] = A[nct][nct];
204        }
205        if (m < p) {
206            singularValues[p - 1] = 0;
207        }
208        if (nrt + 1 < p) {
209            e[nrt] = A[nrt][p - 1];
210        }
211        e[p - 1] = 0;
212
213        // Generate U.
214        for (int j = nct; j < n; j++) {
215            for (int i = 0; i < m; i++) {
216                U[i][j] = 0;
217            }
218            U[j][j] = 1;
219        }
220        for (int k = nct - 1; k >= 0; k--) {
221            if (singularValues[k] != 0) {
222                for (int j = k + 1; j < n; j++) {
223                    double t = 0;
224                    for (int i = k; i < m; i++) {
225                        t += U[i][k] * U[i][j];
226                    }
227                    t = -t / U[k][k];
228                    for (int i = k; i < m; i++) {
229                        U[i][j] += t * U[i][k];
230                    }
231                }
232                for (int i = k; i < m; i++) {
233                    U[i][k] = -U[i][k];
234                }
235                U[k][k] = 1 + U[k][k];
236                for (int i = 0; i < k - 1; i++) {
237                    U[i][k] = 0;
238                }
239            } else {
240                for (int i = 0; i < m; i++) {
241                    U[i][k] = 0;
242                }
243                U[k][k] = 1;
244            }
245        }
246
247        // Generate V.
248        for (int k = n - 1; k >= 0; k--) {
249            if (k < nrt &&
250                e[k] != 0) {
251                for (int j = k + 1; j < n; j++) {
252                    double t = 0;
253                    for (int i = k + 1; i < n; i++) {
254                        t += V[i][k] * V[i][j];
255                    }
256                    t = -t / V[k + 1][k];
257                    for (int i = k + 1; i < n; i++) {
258                        V[i][j] += t * V[i][k];
259                    }
260                }
261            }
262            for (int i = 0; i < n; i++) {
263                V[i][k] = 0;
264            }
265            V[k][k] = 1;
266        }
267
268        // Main iteration loop for the singular values.
269        final int pp = p - 1;
270        while (p > 0) {
271            int k;
272            int kase;
273            // Here is where a test for too many iterations would go.
274            // This section of the program inspects for
275            // negligible elements in the s and e arrays.  On
276            // completion the variables kase and k are set as follows.
277            // kase = 1     if s(p) and e[k-1] are negligible and k<p
278            // kase = 2     if s(k) is negligible and k<p
279            // kase = 3     if e[k-1] is negligible, k<p, and
280            //              s(k), ..., s(p) are not negligible (qr step).
281            // kase = 4     if e(p-1) is negligible (convergence).
282            for (k = p - 2; k >= 0; k--) {
283                final double threshold
284                    = TINY + EPS * (JdkMath.abs(singularValues[k]) +
285                                    JdkMath.abs(singularValues[k + 1]));
286
287                // the following condition is written this way in order
288                // to break out of the loop when NaN occurs, writing it
289                // as "if (JdkMath.abs(e[k]) <= threshold)" would loop
290                // indefinitely in case of NaNs because comparison on NaNs
291                // always return false, regardless of what is checked
292                // see issue MATH-947
293                if (!(JdkMath.abs(e[k]) > threshold)) {
294                    e[k] = 0;
295                    break;
296                }
297            }
298
299            if (k == p - 2) {
300                kase = 4;
301            } else {
302                int ks;
303                for (ks = p - 1; ks >= k; ks--) {
304                    if (ks == k) {
305                        break;
306                    }
307                    final double t = (ks != p ? JdkMath.abs(e[ks]) : 0) +
308                        (ks != k + 1 ? JdkMath.abs(e[ks - 1]) : 0);
309                    if (JdkMath.abs(singularValues[ks]) <= TINY + EPS * t) {
310                        singularValues[ks] = 0;
311                        break;
312                    }
313                }
314                if (ks == k) {
315                    kase = 3;
316                } else if (ks == p - 1) {
317                    kase = 1;
318                } else {
319                    kase = 2;
320                    k = ks;
321                }
322            }
323            k++;
324            // Perform the task indicated by kase.
325            double f;
326            switch (kase) {
327                // Deflate negligible s(p).
328                case 1:
329                    f = e[p - 2];
330                    e[p - 2] = 0;
331                    for (int j = p - 2; j >= k; j--) {
332                        double t = JdkMath.hypot(singularValues[j], f);
333                        final double cs = singularValues[j] / t;
334                        final double sn = f / t;
335                        singularValues[j] = t;
336                        if (j != k) {
337                            f = -sn * e[j - 1];
338                            e[j - 1] = cs * e[j - 1];
339                        }
340
341                        for (int i = 0; i < n; i++) {
342                            t = cs * V[i][j] + sn * V[i][p - 1];
343                            V[i][p - 1] = -sn * V[i][j] + cs * V[i][p - 1];
344                            V[i][j] = t;
345                        }
346                    }
347                    break;
348                // Split at negligible s(k).
349                case 2:
350                    f = e[k - 1];
351                    e[k - 1] = 0;
352                    for (int j = k; j < p; j++) {
353                        double t = JdkMath.hypot(singularValues[j], f);
354                        final double cs = singularValues[j] / t;
355                        final double sn = f / t;
356                        singularValues[j] = t;
357                        f = -sn * e[j];
358                        e[j] = cs * e[j];
359
360                        for (int i = 0; i < m; i++) {
361                            t = cs * U[i][j] + sn * U[i][k - 1];
362                            U[i][k - 1] = -sn * U[i][j] + cs * U[i][k - 1];
363                            U[i][j] = t;
364                        }
365                    }
366                    break;
367                // Perform one qr step.
368                case 3:
369                    // Calculate the shift.
370                    final double maxPm1Pm2 = JdkMath.max(JdkMath.abs(singularValues[p - 1]),
371                                                          JdkMath.abs(singularValues[p - 2]));
372                    final double scale = JdkMath.max(JdkMath.max(JdkMath.max(maxPm1Pm2,
373                                                                                JdkMath.abs(e[p - 2])),
374                                                                   JdkMath.abs(singularValues[k])),
375                                                      JdkMath.abs(e[k]));
376                    final double sp = singularValues[p - 1] / scale;
377                    final double spm1 = singularValues[p - 2] / scale;
378                    final double epm1 = e[p - 2] / scale;
379                    final double sk = singularValues[k] / scale;
380                    final double ek = e[k] / scale;
381                    final double b = ((spm1 + sp) * (spm1 - sp) + epm1 * epm1) / 2.0;
382                    final double c = (sp * epm1) * (sp * epm1);
383                    double shift = 0;
384                    if (b != 0 ||
385                        c != 0) {
386                        shift = JdkMath.sqrt(b * b + c);
387                        if (b < 0) {
388                            shift = -shift;
389                        }
390                        shift = c / (b + shift);
391                    }
392                    f = (sk + sp) * (sk - sp) + shift;
393                    double g = sk * ek;
394                    // Chase zeros.
395                    for (int j = k; j < p - 1; j++) {
396                        double t = JdkMath.hypot(f, g);
397                        double cs = f / t;
398                        double sn = g / t;
399                        if (j != k) {
400                            e[j - 1] = t;
401                        }
402                        f = cs * singularValues[j] + sn * e[j];
403                        e[j] = cs * e[j] - sn * singularValues[j];
404                        g = sn * singularValues[j + 1];
405                        singularValues[j + 1] = cs * singularValues[j + 1];
406
407                        for (int i = 0; i < n; i++) {
408                            t = cs * V[i][j] + sn * V[i][j + 1];
409                            V[i][j + 1] = -sn * V[i][j] + cs * V[i][j + 1];
410                            V[i][j] = t;
411                        }
412                        t = JdkMath.hypot(f, g);
413                        cs = f / t;
414                        sn = g / t;
415                        singularValues[j] = t;
416                        f = cs * e[j] + sn * singularValues[j + 1];
417                        singularValues[j + 1] = -sn * e[j] + cs * singularValues[j + 1];
418                        g = sn * e[j + 1];
419                        e[j + 1] = cs * e[j + 1];
420                        if (j < m - 1) {
421                            for (int i = 0; i < m; i++) {
422                                t = cs * U[i][j] + sn * U[i][j + 1];
423                                U[i][j + 1] = -sn * U[i][j] + cs * U[i][j + 1];
424                                U[i][j] = t;
425                            }
426                        }
427                    }
428                    e[p - 2] = f;
429                    break;
430                // Convergence.
431                default:
432                    // Make the singular values positive.
433                    if (singularValues[k] <= 0) {
434                        singularValues[k] = singularValues[k] < 0 ? -singularValues[k] : 0;
435
436                        for (int i = 0; i <= pp; i++) {
437                            V[i][k] = -V[i][k];
438                        }
439                    }
440                    // Order the singular values.
441                    while (k < pp) {
442                        if (singularValues[k] >= singularValues[k + 1]) {
443                            break;
444                        }
445                        double t = singularValues[k];
446                        singularValues[k] = singularValues[k + 1];
447                        singularValues[k + 1] = t;
448                        if (k < n - 1) {
449                            for (int i = 0; i < n; i++) {
450                                t = V[i][k + 1];
451                                V[i][k + 1] = V[i][k];
452                                V[i][k] = t;
453                            }
454                        }
455                        if (k < m - 1) {
456                            for (int i = 0; i < m; i++) {
457                                t = U[i][k + 1];
458                                U[i][k + 1] = U[i][k];
459                                U[i][k] = t;
460                            }
461                        }
462                        k++;
463                    }
464                    p--;
465                    break;
466            }
467        }
468
469        // Set the small value tolerance used to calculate rank and pseudo-inverse
470        tol = JdkMath.max(m * singularValues[0] * EPS,
471                           JdkMath.sqrt(Precision.SAFE_MIN));
472
473        if (!transposed) {
474            cachedU = MatrixUtils.createRealMatrix(U);
475            cachedV = MatrixUtils.createRealMatrix(V);
476        } else {
477            cachedU = MatrixUtils.createRealMatrix(V);
478            cachedV = MatrixUtils.createRealMatrix(U);
479        }
480    }
481
482    /**
483     * Returns the matrix U of the decomposition.
484     * <p>U is an orthogonal matrix, i.e. its transpose is also its inverse.</p>
485     * @return the U matrix
486     * @see #getUT()
487     */
488    public RealMatrix getU() {
489        // return the cached matrix
490        return cachedU;
491    }
492
493    /**
494     * Returns the transpose of the matrix U of the decomposition.
495     * <p>U is an orthogonal matrix, i.e. its transpose is also its inverse.</p>
496     * @return the U matrix (or null if decomposed matrix is singular)
497     * @see #getU()
498     */
499    public RealMatrix getUT() {
500        if (cachedUt == null) {
501            cachedUt = getU().transpose();
502        }
503        // return the cached matrix
504        return cachedUt;
505    }
506
507    /**
508     * Returns the diagonal matrix &Sigma; of the decomposition.
509     * <p>&Sigma; is a diagonal matrix. The singular values are provided in
510     * non-increasing order, for compatibility with Jama.</p>
511     * @return the &Sigma; matrix
512     */
513    public RealMatrix getS() {
514        if (cachedS == null) {
515            // cache the matrix for subsequent calls
516            cachedS = MatrixUtils.createRealDiagonalMatrix(singularValues);
517        }
518        return cachedS;
519    }
520
521    /**
522     * Returns the diagonal elements of the matrix &Sigma; of the decomposition.
523     * <p>The singular values are provided in non-increasing order, for
524     * compatibility with Jama.</p>
525     * @return the diagonal elements of the &Sigma; matrix
526     */
527    public double[] getSingularValues() {
528        return singularValues.clone();
529    }
530
531    /**
532     * Returns the matrix V of the decomposition.
533     * <p>V is an orthogonal matrix, i.e. its transpose is also its inverse.</p>
534     * @return the V matrix (or null if decomposed matrix is singular)
535     * @see #getVT()
536     */
537    public RealMatrix getV() {
538        // return the cached matrix
539        return cachedV;
540    }
541
542    /**
543     * Returns the transpose of the matrix V of the decomposition.
544     * <p>V is an orthogonal matrix, i.e. its transpose is also its inverse.</p>
545     * @return the V matrix (or null if decomposed matrix is singular)
546     * @see #getV()
547     */
548    public RealMatrix getVT() {
549        if (cachedVt == null) {
550            cachedVt = getV().transpose();
551        }
552        // return the cached matrix
553        return cachedVt;
554    }
555
556    /**
557     * Returns the n &times; n covariance matrix.
558     * <p>The covariance matrix is V &times; J &times; V<sup>T</sup>
559     * where J is the diagonal matrix of the inverse of the squares of
560     * the singular values.</p>
561     * @param minSingularValue value below which singular values are ignored
562     * (a 0 or negative value implies all singular value will be used)
563     * @return covariance matrix
564     * @exception IllegalArgumentException if minSingularValue is larger than
565     * the largest singular value, meaning all singular values are ignored
566     */
567    public RealMatrix getCovariance(final double minSingularValue) {
568        // get the number of singular values to consider
569        final int p = singularValues.length;
570        int dimension = 0;
571        while (dimension < p &&
572               singularValues[dimension] >= minSingularValue) {
573            ++dimension;
574        }
575
576        if (dimension == 0) {
577            throw new NumberIsTooLargeException(LocalizedFormats.TOO_LARGE_CUTOFF_SINGULAR_VALUE,
578                                                minSingularValue, singularValues[0], true);
579        }
580
581        final double[][] data = new double[dimension][p];
582        getVT().walkInOptimizedOrder(new DefaultRealMatrixPreservingVisitor() {
583            /** {@inheritDoc} */
584            @Override
585            public void visit(final int row, final int column,
586                    final double value) {
587                data[row][column] = value / singularValues[row];
588            }
589        }, 0, dimension - 1, 0, p - 1);
590
591        RealMatrix jv = new Array2DRowRealMatrix(data, false);
592        return jv.transpose().multiply(jv);
593    }
594
595    /**
596     * Returns the L<sub>2</sub> norm of the matrix.
597     * <p>The L<sub>2</sub> norm is max(|A &times; u|<sub>2</sub> /
598     * |u|<sub>2</sub>), where |.|<sub>2</sub> denotes the vectorial 2-norm
599     * (i.e. the traditional euclidean norm).</p>
600     * @return norm
601     */
602    public double getNorm() {
603        return singularValues[0];
604    }
605
606    /**
607     * Return the condition number of the matrix.
608     * @return condition number of the matrix
609     */
610    public double getConditionNumber() {
611        return singularValues[0] / singularValues[n - 1];
612    }
613
614    /**
615     * Computes the inverse of the condition number.
616     * In cases of rank deficiency, the {@link #getConditionNumber() condition
617     * number} will become undefined.
618     *
619     * @return the inverse of the condition number.
620     */
621    public double getInverseConditionNumber() {
622        return singularValues[n - 1] / singularValues[0];
623    }
624
625    /**
626     * Return the effective numerical matrix rank.
627     * <p>The effective numerical rank is the number of non-negligible
628     * singular values. The threshold used to identify non-negligible
629     * terms is max(m,n) &times; ulp(s<sub>1</sub>) where ulp(s<sub>1</sub>)
630     * is the least significant bit of the largest singular value.</p>
631     * @return effective numerical matrix rank
632     */
633    public int getRank() {
634        int r = 0;
635        for (int i = 0; i < singularValues.length; i++) {
636            if (singularValues[i] > tol) {
637                r++;
638            }
639        }
640        return r;
641    }
642
643    /**
644     * Get a solver for finding the A &times; X = B solution in least square sense.
645     * @return a solver
646     */
647    public DecompositionSolver getSolver() {
648        return new Solver(singularValues, getUT(), getV(), getRank() == m, tol);
649    }
650
651    /** Specialized solver. */
652    private static final class Solver implements DecompositionSolver {
653        /** Pseudo-inverse of the initial matrix. */
654        private final RealMatrix pseudoInverse;
655        /** Singularity indicator. */
656        private final boolean nonSingular;
657
658        /**
659         * Build a solver from decomposed matrix.
660         *
661         * @param singularValues Singular values.
662         * @param uT U<sup>T</sup> matrix of the decomposition.
663         * @param v V matrix of the decomposition.
664         * @param nonSingular Singularity indicator.
665         * @param tol tolerance for singular values
666         */
667        private Solver(final double[] singularValues, final RealMatrix uT,
668                       final RealMatrix v, final boolean nonSingular, final double tol) {
669            final double[][] suT = uT.getData();
670            for (int i = 0; i < singularValues.length; ++i) {
671                final double a;
672                if (singularValues[i] > tol) {
673                    a = 1 / singularValues[i];
674                } else {
675                    a = 0;
676                }
677                final double[] suTi = suT[i];
678                for (int j = 0; j < suTi.length; ++j) {
679                    suTi[j] *= a;
680                }
681            }
682            pseudoInverse = v.multiply(new Array2DRowRealMatrix(suT, false));
683            this.nonSingular = nonSingular;
684        }
685
686        /**
687         * Solve the linear equation A &times; X = B in least square sense.
688         * <p>
689         * The m&times;n matrix A may not be square, the solution X is such that
690         * ||A &times; X - B|| is minimal.
691         * </p>
692         * @param b Right-hand side of the equation A &times; X = B
693         * @return a vector X that minimizes the two norm of A &times; X - B
694         * @throws org.apache.commons.math4.legacy.exception.DimensionMismatchException
695         * if the matrices dimensions do not match.
696         */
697        @Override
698        public RealVector solve(final RealVector b) {
699            return pseudoInverse.operate(b);
700        }
701
702        /**
703         * Solve the linear equation A &times; X = B in least square sense.
704         * <p>
705         * The m&times;n matrix A may not be square, the solution X is such that
706         * ||A &times; X - B|| is minimal.
707         * </p>
708         *
709         * @param b Right-hand side of the equation A &times; X = B
710         * @return a matrix X that minimizes the two norm of A &times; X - B
711         * @throws org.apache.commons.math4.legacy.exception.DimensionMismatchException
712         * if the matrices dimensions do not match.
713         */
714        @Override
715        public RealMatrix solve(final RealMatrix b) {
716            return pseudoInverse.multiply(b);
717        }
718
719        /**
720         * Check if the decomposed matrix is non-singular.
721         *
722         * @return {@code true} if the decomposed matrix is non-singular.
723         */
724        @Override
725        public boolean isNonSingular() {
726            return nonSingular;
727        }
728
729        /**
730         * Get the pseudo-inverse of the decomposed matrix.
731         *
732         * @return the inverse matrix.
733         */
734        @Override
735        public RealMatrix getInverse() {
736            return pseudoInverse;
737        }
738    }
739}