001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.math4.legacy.linear; 018 019import org.apache.commons.math4.legacy.exception.NumberIsTooLargeException; 020import org.apache.commons.math4.legacy.exception.util.LocalizedFormats; 021import org.apache.commons.math4.core.jdkmath.JdkMath; 022import org.apache.commons.numbers.core.Precision; 023 024/** 025 * Calculates the compact Singular Value Decomposition of a matrix. 026 * <p> 027 * The Singular Value Decomposition of matrix A is a set of three matrices: U, 028 * Σ and V such that A = U × Σ × V<sup>T</sup>. Let A be 029 * a m × n matrix, then U is a m × p orthogonal matrix, Σ is a 030 * p × p diagonal matrix with positive or null elements, V is a p × 031 * n orthogonal matrix (hence V<sup>T</sup> is also orthogonal) where 032 * p=min(m,n). 033 * </p> 034 * <p>This class is similar to the class with similar name from the 035 * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> library, with the 036 * following changes:</p> 037 * <ul> 038 * <li>the {@code norm2} method which has been renamed as {@link #getNorm() 039 * getNorm},</li> 040 * <li>the {@code cond} method which has been renamed as {@link 041 * #getConditionNumber() getConditionNumber},</li> 042 * <li>the {@code rank} method which has been renamed as {@link #getRank() 043 * getRank},</li> 044 * <li>a {@link #getUT() getUT} method has been added,</li> 045 * <li>a {@link #getVT() getVT} method has been added,</li> 046 * <li>a {@link #getSolver() getSolver} method has been added,</li> 047 * <li>a {@link #getCovariance(double) getCovariance} method has been added.</li> 048 * </ul> 049 * @see <a href="http://mathworld.wolfram.com/SingularValueDecomposition.html">MathWorld</a> 050 * @see <a href="http://en.wikipedia.org/wiki/Singular_value_decomposition">Wikipedia</a> 051 * @since 2.0 (changed to concrete class in 3.0) 052 */ 053public class SingularValueDecomposition { 054 /** Relative threshold for small singular values. */ 055 private static final double EPS = 0x1.0p-52; 056 /** Absolute threshold for small singular values. */ 057 private static final double TINY = 0x1.0p-966; 058 /** Computed singular values. */ 059 private final double[] singularValues; 060 /** max(row dimension, column dimension). */ 061 private final int m; 062 /** min(row dimension, column dimension). */ 063 private final int n; 064 /** Indicator for transposed matrix. */ 065 private final boolean transposed; 066 /** Cached value of U matrix. */ 067 private final RealMatrix cachedU; 068 /** Cached value of transposed U matrix. */ 069 private RealMatrix cachedUt; 070 /** Cached value of S (diagonal) matrix. */ 071 private RealMatrix cachedS; 072 /** Cached value of V matrix. */ 073 private final RealMatrix cachedV; 074 /** Cached value of transposed V matrix. */ 075 private RealMatrix cachedVt; 076 /** 077 * Tolerance value for small singular values, calculated once we have 078 * populated "singularValues". 079 **/ 080 private final double tol; 081 082 /** 083 * Calculates the compact Singular Value Decomposition of the given matrix. 084 * 085 * @param matrix Matrix to decompose. 086 */ 087 public SingularValueDecomposition(final RealMatrix matrix) { 088 final double[][] A; 089 090 // "m" is always the largest dimension. 091 if (matrix.getRowDimension() < matrix.getColumnDimension()) { 092 transposed = true; 093 A = matrix.transpose().getData(); 094 m = matrix.getColumnDimension(); 095 n = matrix.getRowDimension(); 096 } else { 097 transposed = false; 098 A = matrix.getData(); 099 m = matrix.getRowDimension(); 100 n = matrix.getColumnDimension(); 101 } 102 103 singularValues = new double[n]; 104 final double[][] U = new double[m][n]; 105 final double[][] V = new double[n][n]; 106 final double[] e = new double[n]; 107 final double[] work = new double[m]; 108 // Reduce A to bidiagonal form, storing the diagonal elements 109 // in s and the super-diagonal elements in e. 110 final int nct = JdkMath.min(m - 1, n); 111 final int nrt = JdkMath.max(0, n - 2); 112 for (int k = 0; k < JdkMath.max(nct, nrt); k++) { 113 if (k < nct) { 114 // Compute the transformation for the k-th column and 115 // place the k-th diagonal in s[k]. 116 // Compute 2-norm of k-th column without under/overflow. 117 singularValues[k] = 0; 118 for (int i = k; i < m; i++) { 119 singularValues[k] = JdkMath.hypot(singularValues[k], A[i][k]); 120 } 121 if (singularValues[k] != 0) { 122 if (A[k][k] < 0) { 123 singularValues[k] = -singularValues[k]; 124 } 125 for (int i = k; i < m; i++) { 126 A[i][k] /= singularValues[k]; 127 } 128 A[k][k] += 1; 129 } 130 singularValues[k] = -singularValues[k]; 131 } 132 for (int j = k + 1; j < n; j++) { 133 if (k < nct && 134 singularValues[k] != 0) { 135 // Apply the transformation. 136 double t = 0; 137 for (int i = k; i < m; i++) { 138 t += A[i][k] * A[i][j]; 139 } 140 t = -t / A[k][k]; 141 for (int i = k; i < m; i++) { 142 A[i][j] += t * A[i][k]; 143 } 144 } 145 // Place the k-th row of A into e for the 146 // subsequent calculation of the row transformation. 147 e[j] = A[k][j]; 148 } 149 if (k < nct) { 150 // Place the transformation in U for subsequent back 151 // multiplication. 152 for (int i = k; i < m; i++) { 153 U[i][k] = A[i][k]; 154 } 155 } 156 if (k < nrt) { 157 // Compute the k-th row transformation and place the 158 // k-th super-diagonal in e[k]. 159 // Compute 2-norm without under/overflow. 160 e[k] = 0; 161 for (int i = k + 1; i < n; i++) { 162 e[k] = JdkMath.hypot(e[k], e[i]); 163 } 164 if (e[k] != 0) { 165 if (e[k + 1] < 0) { 166 e[k] = -e[k]; 167 } 168 for (int i = k + 1; i < n; i++) { 169 e[i] /= e[k]; 170 } 171 e[k + 1] += 1; 172 } 173 e[k] = -e[k]; 174 if (k + 1 < m && 175 e[k] != 0) { 176 // Apply the transformation. 177 for (int i = k + 1; i < m; i++) { 178 work[i] = 0; 179 } 180 for (int j = k + 1; j < n; j++) { 181 for (int i = k + 1; i < m; i++) { 182 work[i] += e[j] * A[i][j]; 183 } 184 } 185 for (int j = k + 1; j < n; j++) { 186 final double t = -e[j] / e[k + 1]; 187 for (int i = k + 1; i < m; i++) { 188 A[i][j] += t * work[i]; 189 } 190 } 191 } 192 193 // Place the transformation in V for subsequent 194 // back multiplication. 195 for (int i = k + 1; i < n; i++) { 196 V[i][k] = e[i]; 197 } 198 } 199 } 200 // Set up the final bidiagonal matrix or order p. 201 int p = n; 202 if (nct < n) { 203 singularValues[nct] = A[nct][nct]; 204 } 205 if (m < p) { 206 singularValues[p - 1] = 0; 207 } 208 if (nrt + 1 < p) { 209 e[nrt] = A[nrt][p - 1]; 210 } 211 e[p - 1] = 0; 212 213 // Generate U. 214 for (int j = nct; j < n; j++) { 215 for (int i = 0; i < m; i++) { 216 U[i][j] = 0; 217 } 218 U[j][j] = 1; 219 } 220 for (int k = nct - 1; k >= 0; k--) { 221 if (singularValues[k] != 0) { 222 for (int j = k + 1; j < n; j++) { 223 double t = 0; 224 for (int i = k; i < m; i++) { 225 t += U[i][k] * U[i][j]; 226 } 227 t = -t / U[k][k]; 228 for (int i = k; i < m; i++) { 229 U[i][j] += t * U[i][k]; 230 } 231 } 232 for (int i = k; i < m; i++) { 233 U[i][k] = -U[i][k]; 234 } 235 U[k][k] = 1 + U[k][k]; 236 for (int i = 0; i < k - 1; i++) { 237 U[i][k] = 0; 238 } 239 } else { 240 for (int i = 0; i < m; i++) { 241 U[i][k] = 0; 242 } 243 U[k][k] = 1; 244 } 245 } 246 247 // Generate V. 248 for (int k = n - 1; k >= 0; k--) { 249 if (k < nrt && 250 e[k] != 0) { 251 for (int j = k + 1; j < n; j++) { 252 double t = 0; 253 for (int i = k + 1; i < n; i++) { 254 t += V[i][k] * V[i][j]; 255 } 256 t = -t / V[k + 1][k]; 257 for (int i = k + 1; i < n; i++) { 258 V[i][j] += t * V[i][k]; 259 } 260 } 261 } 262 for (int i = 0; i < n; i++) { 263 V[i][k] = 0; 264 } 265 V[k][k] = 1; 266 } 267 268 // Main iteration loop for the singular values. 269 final int pp = p - 1; 270 while (p > 0) { 271 int k; 272 int kase; 273 // Here is where a test for too many iterations would go. 274 // This section of the program inspects for 275 // negligible elements in the s and e arrays. On 276 // completion the variables kase and k are set as follows. 277 // kase = 1 if s(p) and e[k-1] are negligible and k<p 278 // kase = 2 if s(k) is negligible and k<p 279 // kase = 3 if e[k-1] is negligible, k<p, and 280 // s(k), ..., s(p) are not negligible (qr step). 281 // kase = 4 if e(p-1) is negligible (convergence). 282 for (k = p - 2; k >= 0; k--) { 283 final double threshold 284 = TINY + EPS * (JdkMath.abs(singularValues[k]) + 285 JdkMath.abs(singularValues[k + 1])); 286 287 // the following condition is written this way in order 288 // to break out of the loop when NaN occurs, writing it 289 // as "if (JdkMath.abs(e[k]) <= threshold)" would loop 290 // indefinitely in case of NaNs because comparison on NaNs 291 // always return false, regardless of what is checked 292 // see issue MATH-947 293 if (!(JdkMath.abs(e[k]) > threshold)) { 294 e[k] = 0; 295 break; 296 } 297 } 298 299 if (k == p - 2) { 300 kase = 4; 301 } else { 302 int ks; 303 for (ks = p - 1; ks >= k; ks--) { 304 if (ks == k) { 305 break; 306 } 307 final double t = (ks != p ? JdkMath.abs(e[ks]) : 0) + 308 (ks != k + 1 ? JdkMath.abs(e[ks - 1]) : 0); 309 if (JdkMath.abs(singularValues[ks]) <= TINY + EPS * t) { 310 singularValues[ks] = 0; 311 break; 312 } 313 } 314 if (ks == k) { 315 kase = 3; 316 } else if (ks == p - 1) { 317 kase = 1; 318 } else { 319 kase = 2; 320 k = ks; 321 } 322 } 323 k++; 324 // Perform the task indicated by kase. 325 double f; 326 switch (kase) { 327 // Deflate negligible s(p). 328 case 1: 329 f = e[p - 2]; 330 e[p - 2] = 0; 331 for (int j = p - 2; j >= k; j--) { 332 double t = JdkMath.hypot(singularValues[j], f); 333 final double cs = singularValues[j] / t; 334 final double sn = f / t; 335 singularValues[j] = t; 336 if (j != k) { 337 f = -sn * e[j - 1]; 338 e[j - 1] = cs * e[j - 1]; 339 } 340 341 for (int i = 0; i < n; i++) { 342 t = cs * V[i][j] + sn * V[i][p - 1]; 343 V[i][p - 1] = -sn * V[i][j] + cs * V[i][p - 1]; 344 V[i][j] = t; 345 } 346 } 347 break; 348 // Split at negligible s(k). 349 case 2: 350 f = e[k - 1]; 351 e[k - 1] = 0; 352 for (int j = k; j < p; j++) { 353 double t = JdkMath.hypot(singularValues[j], f); 354 final double cs = singularValues[j] / t; 355 final double sn = f / t; 356 singularValues[j] = t; 357 f = -sn * e[j]; 358 e[j] = cs * e[j]; 359 360 for (int i = 0; i < m; i++) { 361 t = cs * U[i][j] + sn * U[i][k - 1]; 362 U[i][k - 1] = -sn * U[i][j] + cs * U[i][k - 1]; 363 U[i][j] = t; 364 } 365 } 366 break; 367 // Perform one qr step. 368 case 3: 369 // Calculate the shift. 370 final double maxPm1Pm2 = JdkMath.max(JdkMath.abs(singularValues[p - 1]), 371 JdkMath.abs(singularValues[p - 2])); 372 final double scale = JdkMath.max(JdkMath.max(JdkMath.max(maxPm1Pm2, 373 JdkMath.abs(e[p - 2])), 374 JdkMath.abs(singularValues[k])), 375 JdkMath.abs(e[k])); 376 final double sp = singularValues[p - 1] / scale; 377 final double spm1 = singularValues[p - 2] / scale; 378 final double epm1 = e[p - 2] / scale; 379 final double sk = singularValues[k] / scale; 380 final double ek = e[k] / scale; 381 final double b = ((spm1 + sp) * (spm1 - sp) + epm1 * epm1) / 2.0; 382 final double c = (sp * epm1) * (sp * epm1); 383 double shift = 0; 384 if (b != 0 || 385 c != 0) { 386 shift = JdkMath.sqrt(b * b + c); 387 if (b < 0) { 388 shift = -shift; 389 } 390 shift = c / (b + shift); 391 } 392 f = (sk + sp) * (sk - sp) + shift; 393 double g = sk * ek; 394 // Chase zeros. 395 for (int j = k; j < p - 1; j++) { 396 double t = JdkMath.hypot(f, g); 397 double cs = f / t; 398 double sn = g / t; 399 if (j != k) { 400 e[j - 1] = t; 401 } 402 f = cs * singularValues[j] + sn * e[j]; 403 e[j] = cs * e[j] - sn * singularValues[j]; 404 g = sn * singularValues[j + 1]; 405 singularValues[j + 1] = cs * singularValues[j + 1]; 406 407 for (int i = 0; i < n; i++) { 408 t = cs * V[i][j] + sn * V[i][j + 1]; 409 V[i][j + 1] = -sn * V[i][j] + cs * V[i][j + 1]; 410 V[i][j] = t; 411 } 412 t = JdkMath.hypot(f, g); 413 cs = f / t; 414 sn = g / t; 415 singularValues[j] = t; 416 f = cs * e[j] + sn * singularValues[j + 1]; 417 singularValues[j + 1] = -sn * e[j] + cs * singularValues[j + 1]; 418 g = sn * e[j + 1]; 419 e[j + 1] = cs * e[j + 1]; 420 if (j < m - 1) { 421 for (int i = 0; i < m; i++) { 422 t = cs * U[i][j] + sn * U[i][j + 1]; 423 U[i][j + 1] = -sn * U[i][j] + cs * U[i][j + 1]; 424 U[i][j] = t; 425 } 426 } 427 } 428 e[p - 2] = f; 429 break; 430 // Convergence. 431 default: 432 // Make the singular values positive. 433 if (singularValues[k] <= 0) { 434 singularValues[k] = singularValues[k] < 0 ? -singularValues[k] : 0; 435 436 for (int i = 0; i <= pp; i++) { 437 V[i][k] = -V[i][k]; 438 } 439 } 440 // Order the singular values. 441 while (k < pp) { 442 if (singularValues[k] >= singularValues[k + 1]) { 443 break; 444 } 445 double t = singularValues[k]; 446 singularValues[k] = singularValues[k + 1]; 447 singularValues[k + 1] = t; 448 if (k < n - 1) { 449 for (int i = 0; i < n; i++) { 450 t = V[i][k + 1]; 451 V[i][k + 1] = V[i][k]; 452 V[i][k] = t; 453 } 454 } 455 if (k < m - 1) { 456 for (int i = 0; i < m; i++) { 457 t = U[i][k + 1]; 458 U[i][k + 1] = U[i][k]; 459 U[i][k] = t; 460 } 461 } 462 k++; 463 } 464 p--; 465 break; 466 } 467 } 468 469 // Set the small value tolerance used to calculate rank and pseudo-inverse 470 tol = JdkMath.max(m * singularValues[0] * EPS, 471 JdkMath.sqrt(Precision.SAFE_MIN)); 472 473 if (!transposed) { 474 cachedU = MatrixUtils.createRealMatrix(U); 475 cachedV = MatrixUtils.createRealMatrix(V); 476 } else { 477 cachedU = MatrixUtils.createRealMatrix(V); 478 cachedV = MatrixUtils.createRealMatrix(U); 479 } 480 } 481 482 /** 483 * Returns the matrix U of the decomposition. 484 * <p>U is an orthogonal matrix, i.e. its transpose is also its inverse.</p> 485 * @return the U matrix 486 * @see #getUT() 487 */ 488 public RealMatrix getU() { 489 // return the cached matrix 490 return cachedU; 491 } 492 493 /** 494 * Returns the transpose of the matrix U of the decomposition. 495 * <p>U is an orthogonal matrix, i.e. its transpose is also its inverse.</p> 496 * @return the U matrix (or null if decomposed matrix is singular) 497 * @see #getU() 498 */ 499 public RealMatrix getUT() { 500 if (cachedUt == null) { 501 cachedUt = getU().transpose(); 502 } 503 // return the cached matrix 504 return cachedUt; 505 } 506 507 /** 508 * Returns the diagonal matrix Σ of the decomposition. 509 * <p>Σ is a diagonal matrix. The singular values are provided in 510 * non-increasing order, for compatibility with Jama.</p> 511 * @return the Σ matrix 512 */ 513 public RealMatrix getS() { 514 if (cachedS == null) { 515 // cache the matrix for subsequent calls 516 cachedS = MatrixUtils.createRealDiagonalMatrix(singularValues); 517 } 518 return cachedS; 519 } 520 521 /** 522 * Returns the diagonal elements of the matrix Σ of the decomposition. 523 * <p>The singular values are provided in non-increasing order, for 524 * compatibility with Jama.</p> 525 * @return the diagonal elements of the Σ matrix 526 */ 527 public double[] getSingularValues() { 528 return singularValues.clone(); 529 } 530 531 /** 532 * Returns the matrix V of the decomposition. 533 * <p>V is an orthogonal matrix, i.e. its transpose is also its inverse.</p> 534 * @return the V matrix (or null if decomposed matrix is singular) 535 * @see #getVT() 536 */ 537 public RealMatrix getV() { 538 // return the cached matrix 539 return cachedV; 540 } 541 542 /** 543 * Returns the transpose of the matrix V of the decomposition. 544 * <p>V is an orthogonal matrix, i.e. its transpose is also its inverse.</p> 545 * @return the V matrix (or null if decomposed matrix is singular) 546 * @see #getV() 547 */ 548 public RealMatrix getVT() { 549 if (cachedVt == null) { 550 cachedVt = getV().transpose(); 551 } 552 // return the cached matrix 553 return cachedVt; 554 } 555 556 /** 557 * Returns the n × n covariance matrix. 558 * <p>The covariance matrix is V × J × V<sup>T</sup> 559 * where J is the diagonal matrix of the inverse of the squares of 560 * the singular values.</p> 561 * @param minSingularValue value below which singular values are ignored 562 * (a 0 or negative value implies all singular value will be used) 563 * @return covariance matrix 564 * @exception IllegalArgumentException if minSingularValue is larger than 565 * the largest singular value, meaning all singular values are ignored 566 */ 567 public RealMatrix getCovariance(final double minSingularValue) { 568 // get the number of singular values to consider 569 final int p = singularValues.length; 570 int dimension = 0; 571 while (dimension < p && 572 singularValues[dimension] >= minSingularValue) { 573 ++dimension; 574 } 575 576 if (dimension == 0) { 577 throw new NumberIsTooLargeException(LocalizedFormats.TOO_LARGE_CUTOFF_SINGULAR_VALUE, 578 minSingularValue, singularValues[0], true); 579 } 580 581 final double[][] data = new double[dimension][p]; 582 getVT().walkInOptimizedOrder(new DefaultRealMatrixPreservingVisitor() { 583 /** {@inheritDoc} */ 584 @Override 585 public void visit(final int row, final int column, 586 final double value) { 587 data[row][column] = value / singularValues[row]; 588 } 589 }, 0, dimension - 1, 0, p - 1); 590 591 RealMatrix jv = new Array2DRowRealMatrix(data, false); 592 return jv.transpose().multiply(jv); 593 } 594 595 /** 596 * Returns the L<sub>2</sub> norm of the matrix. 597 * <p>The L<sub>2</sub> norm is max(|A × u|<sub>2</sub> / 598 * |u|<sub>2</sub>), where |.|<sub>2</sub> denotes the vectorial 2-norm 599 * (i.e. the traditional euclidean norm).</p> 600 * @return norm 601 */ 602 public double getNorm() { 603 return singularValues[0]; 604 } 605 606 /** 607 * Return the condition number of the matrix. 608 * @return condition number of the matrix 609 */ 610 public double getConditionNumber() { 611 return singularValues[0] / singularValues[n - 1]; 612 } 613 614 /** 615 * Computes the inverse of the condition number. 616 * In cases of rank deficiency, the {@link #getConditionNumber() condition 617 * number} will become undefined. 618 * 619 * @return the inverse of the condition number. 620 */ 621 public double getInverseConditionNumber() { 622 return singularValues[n - 1] / singularValues[0]; 623 } 624 625 /** 626 * Return the effective numerical matrix rank. 627 * <p>The effective numerical rank is the number of non-negligible 628 * singular values. The threshold used to identify non-negligible 629 * terms is max(m,n) × ulp(s<sub>1</sub>) where ulp(s<sub>1</sub>) 630 * is the least significant bit of the largest singular value.</p> 631 * @return effective numerical matrix rank 632 */ 633 public int getRank() { 634 int r = 0; 635 for (int i = 0; i < singularValues.length; i++) { 636 if (singularValues[i] > tol) { 637 r++; 638 } 639 } 640 return r; 641 } 642 643 /** 644 * Get a solver for finding the A × X = B solution in least square sense. 645 * @return a solver 646 */ 647 public DecompositionSolver getSolver() { 648 return new Solver(singularValues, getUT(), getV(), getRank() == m, tol); 649 } 650 651 /** Specialized solver. */ 652 private static final class Solver implements DecompositionSolver { 653 /** Pseudo-inverse of the initial matrix. */ 654 private final RealMatrix pseudoInverse; 655 /** Singularity indicator. */ 656 private final boolean nonSingular; 657 658 /** 659 * Build a solver from decomposed matrix. 660 * 661 * @param singularValues Singular values. 662 * @param uT U<sup>T</sup> matrix of the decomposition. 663 * @param v V matrix of the decomposition. 664 * @param nonSingular Singularity indicator. 665 * @param tol tolerance for singular values 666 */ 667 private Solver(final double[] singularValues, final RealMatrix uT, 668 final RealMatrix v, final boolean nonSingular, final double tol) { 669 final double[][] suT = uT.getData(); 670 for (int i = 0; i < singularValues.length; ++i) { 671 final double a; 672 if (singularValues[i] > tol) { 673 a = 1 / singularValues[i]; 674 } else { 675 a = 0; 676 } 677 final double[] suTi = suT[i]; 678 for (int j = 0; j < suTi.length; ++j) { 679 suTi[j] *= a; 680 } 681 } 682 pseudoInverse = v.multiply(new Array2DRowRealMatrix(suT, false)); 683 this.nonSingular = nonSingular; 684 } 685 686 /** 687 * Solve the linear equation A × X = B in least square sense. 688 * <p> 689 * The m×n matrix A may not be square, the solution X is such that 690 * ||A × X - B|| is minimal. 691 * </p> 692 * @param b Right-hand side of the equation A × X = B 693 * @return a vector X that minimizes the two norm of A × X - B 694 * @throws org.apache.commons.math4.legacy.exception.DimensionMismatchException 695 * if the matrices dimensions do not match. 696 */ 697 @Override 698 public RealVector solve(final RealVector b) { 699 return pseudoInverse.operate(b); 700 } 701 702 /** 703 * Solve the linear equation A × X = B in least square sense. 704 * <p> 705 * The m×n matrix A may not be square, the solution X is such that 706 * ||A × X - B|| is minimal. 707 * </p> 708 * 709 * @param b Right-hand side of the equation A × X = B 710 * @return a matrix X that minimizes the two norm of A × X - B 711 * @throws org.apache.commons.math4.legacy.exception.DimensionMismatchException 712 * if the matrices dimensions do not match. 713 */ 714 @Override 715 public RealMatrix solve(final RealMatrix b) { 716 return pseudoInverse.multiply(b); 717 } 718 719 /** 720 * Check if the decomposed matrix is non-singular. 721 * 722 * @return {@code true} if the decomposed matrix is non-singular. 723 */ 724 @Override 725 public boolean isNonSingular() { 726 return nonSingular; 727 } 728 729 /** 730 * Get the pseudo-inverse of the decomposed matrix. 731 * 732 * @return the inverse matrix. 733 */ 734 @Override 735 public RealMatrix getInverse() { 736 return pseudoInverse; 737 } 738 } 739}