001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.math4.legacy.optim.univariate; 018 019import org.apache.commons.math4.legacy.analysis.UnivariateFunction; 020import org.apache.commons.math4.legacy.exception.TooManyEvaluationsException; 021import org.apache.commons.math4.legacy.optim.BaseOptimizer; 022import org.apache.commons.math4.legacy.optim.ConvergenceChecker; 023import org.apache.commons.math4.legacy.optim.OptimizationData; 024import org.apache.commons.math4.legacy.optim.nonlinear.scalar.GoalType; 025 026/** 027 * Base class for a univariate scalar function optimizer. 028 * 029 * @since 3.1 030 */ 031public abstract class UnivariateOptimizer 032 extends BaseOptimizer<UnivariatePointValuePair> { 033 /** Objective function. */ 034 private UnivariateFunction function; 035 /** Type of optimization. */ 036 private GoalType goal; 037 /** Initial guess. */ 038 private double start; 039 /** Lower bound. */ 040 private double min; 041 /** Upper bound. */ 042 private double max; 043 044 /** 045 * @param checker Convergence checker. 046 */ 047 protected UnivariateOptimizer(ConvergenceChecker<UnivariatePointValuePair> checker) { 048 super(checker); 049 } 050 051 /** 052 * {@inheritDoc} 053 * 054 * @param optData Optimization data. In addition to those documented in 055 * {@link BaseOptimizer#parseOptimizationData(OptimizationData[]) 056 * BaseOptimizer}, this method will register the following data: 057 * <ul> 058 * <li>{@link GoalType}</li> 059 * <li>{@link SearchInterval}</li> 060 * <li>{@link UnivariateObjectiveFunction}</li> 061 * </ul> 062 * @return {@inheritDoc} 063 * @throws TooManyEvaluationsException if the maximal number of 064 * evaluations is exceeded. 065 */ 066 @Override 067 public UnivariatePointValuePair optimize(OptimizationData... optData) 068 throws TooManyEvaluationsException { 069 // Perform computation. 070 return super.optimize(optData); 071 } 072 073 /** 074 * @return the optimization type. 075 */ 076 public GoalType getGoalType() { 077 return goal; 078 } 079 080 /** 081 * Scans the list of (required and optional) optimization data that 082 * characterize the problem. 083 * 084 * @param optData Optimization data. 085 * The following data will be looked for: 086 * <ul> 087 * <li>{@link GoalType}</li> 088 * <li>{@link SearchInterval}</li> 089 * <li>{@link UnivariateObjectiveFunction}</li> 090 * </ul> 091 */ 092 @Override 093 protected void parseOptimizationData(OptimizationData... optData) { 094 // Allow base class to register its own data. 095 super.parseOptimizationData(optData); 096 097 // The existing values (as set by the previous call) are reused if 098 // not provided in the argument list. 099 for (OptimizationData data : optData) { 100 if (data instanceof SearchInterval) { 101 final SearchInterval interval = (SearchInterval) data; 102 min = interval.getMin(); 103 max = interval.getMax(); 104 start = interval.getStartValue(); 105 continue; 106 } 107 if (data instanceof UnivariateObjectiveFunction) { 108 final UnivariateFunction delegate = ((UnivariateObjectiveFunction) data).getObjectiveFunction(); 109 function = new UnivariateFunction() { 110 @Override 111 public double value(double point) { 112 incrementEvaluationCount(); 113 return delegate.value(point); 114 } 115 }; 116 continue; 117 } 118 if (data instanceof GoalType) { 119 goal = (GoalType) data; 120 continue; 121 } 122 } 123 } 124 125 /** 126 * @return the initial guess. 127 */ 128 public double getStartValue() { 129 return start; 130 } 131 /** 132 * @return the lower bounds. 133 */ 134 public double getMin() { 135 return min; 136 } 137 /** 138 * @return the upper bounds. 139 */ 140 public double getMax() { 141 return max; 142 } 143 144 /** 145 * @return a wrapper that delegates to the user-supplied function, 146 * and counts the number of evaluations. 147 */ 148 protected UnivariateFunction getObjectiveFunction() { 149 return function; 150 } 151 152 /** 153 * Computes the objective function value. 154 * This method <em>must</em> be called by subclasses to enforce the 155 * evaluation counter limit. 156 * 157 * @param x Point at which the objective function must be evaluated. 158 * @return the objective function value at the specified point. 159 * @throws TooManyEvaluationsException if the maximal number of 160 * evaluations is exceeded. 161 * 162 * @deprecated Use {@link #getObjectiveFunction()} instead. 163 */ 164 @Deprecated 165 protected double computeObjectiveValue(double x) { 166 return function.value(x); 167 } 168}