001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.math4.legacy.stat.regression; 018 019import org.apache.commons.math4.legacy.exception.MathIllegalArgumentException; 020import org.apache.commons.math4.legacy.exception.NoDataException; 021 022/** 023 * An interface for regression models allowing for dynamic updating of the data. 024 * That is, the entire data set need not be loaded into memory. As observations 025 * become available, they can be added to the regression model and an updated 026 * estimate regression statistics can be calculated. 027 * 028 * @since 3.0 029 */ 030public interface UpdatingMultipleLinearRegression { 031 032 /** 033 * Returns true if a constant has been included false otherwise. 034 * 035 * @return true if constant exists, false otherwise 036 */ 037 boolean hasIntercept(); 038 039 /** 040 * Returns the number of observations added to the regression model. 041 * 042 * @return Number of observations 043 */ 044 long getN(); 045 046 /** 047 * Adds one observation to the regression model. 048 * 049 * @param x the independent variables which form the design matrix 050 * @param y the dependent or response variable 051 * @throws ModelSpecificationException if the length of {@code x} does not equal 052 * the number of independent variables in the model 053 */ 054 void addObservation(double[] x, double y) throws ModelSpecificationException; 055 056 /** 057 * Adds a series of observations to the regression model. The lengths of 058 * x and y must be the same and x must be rectangular. 059 * 060 * @param x a series of observations on the independent variables 061 * @param y a series of observations on the dependent variable 062 * The length of x and y must be the same 063 * @throws ModelSpecificationException if {@code x} is not rectangular, does not match 064 * the length of {@code y} or does not contain sufficient data to estimate the model 065 */ 066 void addObservations(double[][] x, double[] y) throws ModelSpecificationException; 067 068 /** 069 * Clears internal buffers and resets the regression model. This means all 070 * data and derived values are initialized 071 */ 072 void clear(); 073 074 075 /** 076 * Performs a regression on data present in buffers and outputs a RegressionResults object. 077 * @return RegressionResults acts as a container of regression output 078 * @throws ModelSpecificationException if the model is not correctly specified 079 * @throws NoDataException if there is not sufficient data in the model to 080 * estimate the regression parameters 081 */ 082 RegressionResults regress() throws ModelSpecificationException, NoDataException; 083 084 /** 085 * Performs a regression on data present in buffers including only regressors. 086 * indexed in variablesToInclude and outputs a RegressionResults object 087 * @param variablesToInclude an array of indices of regressors to include 088 * @return RegressionResults acts as a container of regression output 089 * @throws ModelSpecificationException if the model is not correctly specified 090 * @throws MathIllegalArgumentException if the variablesToInclude array is null or zero length 091 */ 092 RegressionResults regress(int[] variablesToInclude) throws ModelSpecificationException, MathIllegalArgumentException; 093}