ExponentialDecayFunction.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math4.neuralnet.sofm.util;
- import java.util.function.LongToDoubleFunction;
- import org.apache.commons.math4.neuralnet.internal.NeuralNetException;
- /**
- * Exponential decay function: <code>a e<sup>-x / b</sup></code>,
- * where {@code x} is the (integer) independent variable.
- * <br>
- * Class is immutable.
- *
- * @since 3.3
- */
- public class ExponentialDecayFunction implements LongToDoubleFunction {
- /** Factor {@code a}. */
- private final double a;
- /** Factor {@code 1 / b}. */
- private final double oneOverB;
- /**
- * Creates an instance. It will be such that
- * <ul>
- * <li>{@code a = initValue}</li>
- * <li>{@code b = -numCall / ln(valueAtNumCall / initValue)}</li>
- * </ul>
- *
- * @param initValue Initial value, i.e. {@link #applyAsDouble(long) applyAsDouble(0)}.
- * @param valueAtNumCall Value of the function at {@code numCall}.
- * @param numCall Argument for which the function returns
- * {@code valueAtNumCall}.
- * @throws IllegalArgumentException if {@code initValue <= 0},
- * {@code valueAtNumCall <= 0}, {@code valueAtNumCall >= initValue} or
- * {@code numCall <= 0}.
- */
- public ExponentialDecayFunction(double initValue,
- double valueAtNumCall,
- long numCall) {
- if (initValue <= 0) {
- throw new NeuralNetException(NeuralNetException.NOT_STRICTLY_POSITIVE, initValue);
- }
- if (valueAtNumCall <= 0) {
- throw new NeuralNetException(NeuralNetException.NOT_STRICTLY_POSITIVE, valueAtNumCall);
- }
- if (valueAtNumCall >= initValue) {
- throw new NeuralNetException(NeuralNetException.TOO_LARGE, valueAtNumCall, initValue);
- }
- if (numCall <= 0) {
- throw new NeuralNetException(NeuralNetException.NOT_STRICTLY_POSITIVE, numCall);
- }
- a = initValue;
- oneOverB = -Math.log(valueAtNumCall / initValue) / numCall;
- }
- /**
- * Computes <code>a e<sup>-numCall / b</sup></code>.
- *
- * @param numCall Current step of the training task.
- * @return the value of the function at {@code numCall}.
- */
- @Override
- public double applyAsDouble(long numCall) {
- return a * Math.exp(-numCall * oneOverB);
- }
- }