QuasiSigmoidDecayFunction.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math4.neuralnet.sofm.util;
- import java.util.function.DoubleUnaryOperator;
- import java.util.function.LongToDoubleFunction;
- import org.apache.commons.math4.neuralnet.internal.NeuralNetException;
- /**
- * Decay function whose shape is similar to a sigmoid.
- * <br>
- * Class is immutable.
- *
- * @since 3.3
- */
- public class QuasiSigmoidDecayFunction implements LongToDoubleFunction {
- /** Sigmoid. */
- private final DoubleUnaryOperator sigmoid;
- /** See {@link #value(long)}. */
- private final double scale;
- /**
- * Creates an instance.
- * The function {@code f} will have the following properties:
- * <ul>
- * <li>{@code f(0) = initValue}</li>
- * <li>{@code numCall} is the inflexion point</li>
- * <li>{@code slope = f'(numCall)}</li>
- * </ul>
- *
- * @param initValue Initial value, i.e. {@link #applyAsDouble(long) applyAsDouble(0)}.
- * @param slope Value of the function derivative at {@code numCall}.
- * @param numCall Inflexion point.
- * @throws IllegalArgumentException if {@code initValue <= 0},
- * {@code slope >= 0} or {@code numCall <= 0}.
- */
- public QuasiSigmoidDecayFunction(double initValue,
- double slope,
- long numCall) {
- if (initValue <= 0) {
- throw new NeuralNetException(NeuralNetException.NOT_STRICTLY_POSITIVE, initValue);
- }
- if (slope >= 0) {
- throw new NeuralNetException(NeuralNetException.TOO_LARGE, slope, 0);
- }
- if (numCall <= 1) {
- throw new NeuralNetException(NeuralNetException.TOO_SMALL, numCall, 1);
- }
- final double k = initValue;
- final double m = numCall;
- final double b = 4 * slope / initValue;
- sigmoid = x -> k / (1 + Math.exp(b * (m - x)));
- final double y0 = sigmoid.applyAsDouble(0d);
- scale = k / y0;
- }
- /**
- * Computes the value of the learning factor.
- *
- * @param numCall Current step of the training task.
- * @return the value of the function at {@code numCall}.
- */
- @Override
- public double applyAsDouble(long numCall) {
- return scale * sigmoid.applyAsDouble((double) numCall);
- }
- }