LearningFactorFunctionFactory.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math4.neuralnet.sofm;
- import org.apache.commons.math4.neuralnet.internal.NeuralNetException;
- import org.apache.commons.math4.neuralnet.sofm.util.ExponentialDecayFunction;
- import org.apache.commons.math4.neuralnet.sofm.util.QuasiSigmoidDecayFunction;
- /**
- * Factory for creating instances of {@link LearningFactorFunction}.
- *
- * @since 3.3
- */
- public final class LearningFactorFunctionFactory {
- /** Class contains only static methods. */
- private LearningFactorFunctionFactory() {}
- /**
- * Creates an exponential decay {@link LearningFactorFunction function}.
- * It will compute <code>a e<sup>-x / b</sup></code>,
- * where {@code x} is the (integer) independent variable and
- * <ul>
- * <li><code>a = initValue</code>
- * <li><code>b = -numCall / ln(valueAtNumCall / initValue)</code>
- * </ul>
- *
- * @param initValue Initial value, i.e.
- * {@link LearningFactorFunction#value(long) value(0)}.
- * @param valueAtNumCall Value of the function at {@code numCall}.
- * @param numCall Argument for which the function returns
- * {@code valueAtNumCall}.
- * @return the learning factor function.
- * @throws IllegalArgumentException if {@code initValue <= 0},
- * {@code initValue > 1} {@code valueAtNumCall <= 0},
- * {@code valueAtNumCall >= initValue} or {@code numCall <= 0}.
- */
- public static LearningFactorFunction exponentialDecay(final double initValue,
- final double valueAtNumCall,
- final long numCall) {
- if (initValue <= 0 ||
- initValue > 1) {
- throw new NeuralNetException(NeuralNetException.OUT_OF_RANGE, initValue, 0, 1);
- }
- return new LearningFactorFunction() {
- /** DecayFunction. */
- private final ExponentialDecayFunction decay
- = new ExponentialDecayFunction(initValue, valueAtNumCall, numCall);
- /** {@inheritDoc} */
- @Override
- public double value(long n) {
- return decay.applyAsDouble(n);
- }
- };
- }
- /**
- * Creates an sigmoid-like {@code LearningFactorFunction function}.
- * The function {@code f} will have the following properties:
- * <ul>
- * <li>{@code f(0) = initValue}</li>
- * <li>{@code numCall} is the inflexion point</li>
- * <li>{@code slope = f'(numCall)}</li>
- * </ul>
- *
- * @param initValue Initial value, i.e.
- * {@link LearningFactorFunction#value(long) value(0)}.
- * @param slope Value of the function derivative at {@code numCall}.
- * @param numCall Inflexion point.
- * @return the learning factor function.
- * @throws IllegalArgumentException if {@code initValue <= 0},
- * {@code initValue > 1}, {@code slope >= 0} or {@code numCall <= 0}.
- */
- public static LearningFactorFunction quasiSigmoidDecay(final double initValue,
- final double slope,
- final long numCall) {
- if (initValue <= 0 ||
- initValue > 1) {
- throw new NeuralNetException(NeuralNetException.OUT_OF_RANGE, initValue, 0, 1);
- }
- return new LearningFactorFunction() {
- /** DecayFunction. */
- private final QuasiSigmoidDecayFunction decay
- = new QuasiSigmoidDecayFunction(initValue, slope, numCall);
- /** {@inheritDoc} */
- @Override
- public double value(long n) {
- return decay.applyAsDouble(n);
- }
- };
- }
- }