UnifiedDistanceMatrix.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.neuralnet.twod.util;
import org.apache.commons.math4.neuralnet.DistanceMeasure;
import org.apache.commons.math4.neuralnet.Neuron;
import org.apache.commons.math4.neuralnet.twod.NeuronSquareMesh2D;
/**
* <a href="http://en.wikipedia.org/wiki/U-Matrix">U-Matrix</a>
* visualization of high-dimensional data projection.
* The 8 individual inter-units distances will be
* {@link #computeImage(NeuronSquareMesh2D) computed}. They will be
* stored in additional pixels around each of the original units of the
* 2D-map. The additional pixels that lie along a "diagonal" are shared
* by <em>two</em> pairs of units: their value will be set to the average
* distance between the units belonging to each of the pairs. The value
* zero will be stored in the pixel corresponding to the location of a
* unit of the 2D-map.
*
* @since 3.6
* @see org.apache.commons.math4.neuralnet.twod.NeuronSquareMesh2D.DataVisualization#getUMatrix()
*/
public class UnifiedDistanceMatrix implements MapVisualization {
/** Distance. */
private final DistanceMeasure distance;
/**
* @param distance Distance.
*/
public UnifiedDistanceMatrix(DistanceMeasure distance) {
this.distance = distance;
}
/**
* Computes the distances between a unit of the map and its
* neighbours.
* The image will contain more pixels than the number of neurons
* in the given {@code map} because each neuron has 8 neighbours.
* The value zero will be stored in the pixels corresponding to
* the location of a map unit.
*
* @param map Map.
* @return an image representing the individual distances.
*/
@Override
public double[][] computeImage(NeuronSquareMesh2D map) {
final int numRows = map.getNumberOfRows();
final int numCols = map.getNumberOfColumns();
final double[][] uMatrix = new double[numRows * 2 + 1][numCols * 2 + 1];
// 1.
// Fill right and bottom slots of each unit's location with the
// distance between the current unit and each of the two neighbours,
// respectively.
for (int i = 0; i < numRows; i++) {
// Current unit's row index in result image.
final int iR = 2 * i + 1;
for (int j = 0; j < numCols; j++) {
// Current unit's column index in result image.
final int jR = 2 * j + 1;
final double[] current = map.getNeuron(i, j).getFeatures();
Neuron neighbour;
// Right neighbour.
neighbour = map.getNeuron(i, j,
NeuronSquareMesh2D.HorizontalDirection.RIGHT,
NeuronSquareMesh2D.VerticalDirection.CENTER);
if (neighbour != null) {
uMatrix[iR][jR + 1] = distance.applyAsDouble(current,
neighbour.getFeatures());
}
// Bottom-center neighbour.
neighbour = map.getNeuron(i, j,
NeuronSquareMesh2D.HorizontalDirection.CENTER,
NeuronSquareMesh2D.VerticalDirection.DOWN);
if (neighbour != null) {
uMatrix[iR + 1][jR] = distance.applyAsDouble(current,
neighbour.getFeatures());
}
}
}
// 2.
// Fill the bottom-right slot of each unit's location with the average
// of the distances between
// * the current unit and its bottom-right neighbour, and
// * the bottom-center neighbour and the right neighbour.
for (int i = 0; i < numRows; i++) {
// Current unit's row index in result image.
final int iR = 2 * i + 1;
for (int j = 0; j < numCols; j++) {
// Current unit's column index in result image.
final int jR = 2 * j + 1;
final Neuron current = map.getNeuron(i, j);
final Neuron right = map.getNeuron(i, j,
NeuronSquareMesh2D.HorizontalDirection.RIGHT,
NeuronSquareMesh2D.VerticalDirection.CENTER);
final Neuron bottom = map.getNeuron(i, j,
NeuronSquareMesh2D.HorizontalDirection.CENTER,
NeuronSquareMesh2D.VerticalDirection.DOWN);
final Neuron bottomRight = map.getNeuron(i, j,
NeuronSquareMesh2D.HorizontalDirection.RIGHT,
NeuronSquareMesh2D.VerticalDirection.DOWN);
final double current2BottomRight = bottomRight == null ?
0 :
distance.applyAsDouble(current.getFeatures(),
bottomRight.getFeatures());
final double right2Bottom = (right == null ||
bottom == null) ?
0 :
distance.applyAsDouble(right.getFeatures(),
bottom.getFeatures());
// Bottom-right slot.
uMatrix[iR + 1][jR + 1] = 0.5 * (current2BottomRight + right2Bottom);
}
}
// 3. Copy last row into first row.
final int lastRow = uMatrix.length - 1;
uMatrix[0] = uMatrix[lastRow];
// 4.
// Copy last column into first column.
final int lastCol = uMatrix[0].length - 1;
for (int r = 0; r < lastRow; r++) {
uMatrix[r][0] = uMatrix[r][lastCol];
}
return uMatrix;
}
}