FastCosineTransform.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math4.transform;
- import java.util.function.UnaryOperator;
- import java.util.function.DoubleUnaryOperator;
- import org.apache.commons.numbers.complex.Complex;
- import org.apache.commons.numbers.core.ArithmeticUtils;
- /**
- * Implements the Fast Cosine Transform for transformation of one-dimensional
- * real data sets. For reference, see James S. Walker, <em>Fast Fourier
- * Transforms</em>, chapter 3 (ISBN 0849371635).
- * <p>
- * There are several variants of the discrete cosine transform. The present
- * implementation corresponds to DCT-I, with various normalization conventions,
- * which are specified by the parameter {@link Norm}.
- * <p>
- * DCT-I is equivalent to DFT of an <em>even extension</em> of the data series.
- * More precisely, if x<sub>0</sub>, …, x<sub>N-1</sub> is the data set
- * to be cosine transformed, the extended data set
- * x<sub>0</sub><sup>#</sup>, …, x<sub>2N-3</sub><sup>#</sup>
- * is defined as follows
- * <ul>
- * <li>x<sub>k</sub><sup>#</sup> = x<sub>k</sub> if 0 ≤ k < N,</li>
- * <li>x<sub>k</sub><sup>#</sup> = x<sub>2N-2-k</sub>
- * if N ≤ k < 2N - 2.</li>
- * </ul>
- * <p>
- * Then, the standard DCT-I y<sub>0</sub>, …, y<sub>N-1</sub> of the real
- * data set x<sub>0</sub>, …, x<sub>N-1</sub> is equal to <em>half</em>
- * of the N first elements of the DFT of the extended data set
- * x<sub>0</sub><sup>#</sup>, …, x<sub>2N-3</sub><sup>#</sup>
- * <br>
- * y<sub>n</sub> = (1 / 2) ∑<sub>k=0</sub><sup>2N-3</sup>
- * x<sub>k</sub><sup>#</sup> exp[-2πi nk / (2N - 2)]
- * k = 0, …, N-1.
- * <p>
- * The present implementation of the discrete cosine transform as a fast cosine
- * transform requires the length of the data set to be a power of two plus one
- * (N = 2<sup>n</sup> + 1). Besides, it implicitly assumes
- * that the sampled function is even.
- */
- public class FastCosineTransform implements RealTransform {
- /** Operation to be performed. */
- private final UnaryOperator<double[]> op;
- /**
- * @param normalization Normalization to be applied to the
- * transformed data.
- * @param inverse Whether to perform the inverse transform.
- */
- public FastCosineTransform(final Norm normalization,
- final boolean inverse) {
- op = create(normalization, inverse);
- }
- /**
- * @param normalization Normalization to be applied to the
- * transformed data.
- */
- public FastCosineTransform(final Norm normalization) {
- this(normalization, false);
- }
- /**
- * {@inheritDoc}
- *
- * @throws IllegalArgumentException if the length of the data array is
- * not a power of two plus one.
- */
- @Override
- public double[] apply(final double[] f) {
- return op.apply(f);
- }
- /**
- * {@inheritDoc}
- *
- * @throws IllegalArgumentException if the number of sample points is
- * not a power of two plus one, if the lower bound is greater than or
- * equal to the upper bound, if the number of sample points is negative.
- */
- @Override
- public double[] apply(final DoubleUnaryOperator f,
- final double min,
- final double max,
- final int n) {
- return apply(TransformUtils.sample(f, min, max, n));
- }
- /**
- * Perform the FCT algorithm (including inverse).
- *
- * @param f Data to be transformed.
- * @return the transformed array.
- * @throws IllegalArgumentException if the length of the data array is
- * not a power of two plus one.
- */
- private double[] fct(double[] f) {
- final int n = f.length - 1;
- if (!ArithmeticUtils.isPowerOfTwo(n)) {
- throw new TransformException(TransformException.NOT_POWER_OF_TWO_PLUS_ONE,
- Integer.valueOf(f.length));
- }
- final double[] transformed = new double[f.length];
- if (n == 1) { // trivial case
- transformed[0] = 0.5 * (f[0] + f[1]);
- transformed[1] = 0.5 * (f[0] - f[1]);
- return transformed;
- }
- // construct a new array and perform FFT on it
- final double[] x = new double[n];
- x[0] = 0.5 * (f[0] + f[n]);
- final int nShifted = n >> 1;
- x[nShifted] = f[nShifted];
- // temporary variable for transformed[1]
- double t1 = 0.5 * (f[0] - f[n]);
- final double piOverN = Math.PI / n;
- for (int i = 1; i < nShifted; i++) {
- final int nMi = n - i;
- final double fi = f[i];
- final double fnMi = f[nMi];
- final double a = 0.5 * (fi + fnMi);
- final double arg = i * piOverN;
- final double b = Math.sin(arg) * (fi - fnMi);
- final double c = Math.cos(arg) * (fi - fnMi);
- x[i] = a - b;
- x[nMi] = a + b;
- t1 += c;
- }
- final FastFourierTransform transformer = new FastFourierTransform(FastFourierTransform.Norm.STD,
- false);
- final Complex[] y = transformer.apply(x);
- // reconstruct the FCT result for the original array
- transformed[0] = y[0].getReal();
- transformed[1] = t1;
- for (int i = 1; i < nShifted; i++) {
- final int i2 = 2 * i;
- transformed[i2] = y[i].getReal();
- transformed[i2 + 1] = transformed[i2 - 1] - y[i].getImaginary();
- }
- transformed[n] = y[nShifted].getReal();
- return transformed;
- }
- /**
- * Factory method.
- *
- * @param normalization Normalization to be applied to the
- * transformed data.
- * @param inverse Whether to perform the inverse transform.
- * @return the transform operator.
- */
- private UnaryOperator<double[]> create(final Norm normalization,
- final boolean inverse) {
- if (inverse) {
- return normalization == Norm.ORTHO ?
- f -> TransformUtils.scaleInPlace(fct(f), Math.sqrt(2d / (f.length - 1))) :
- f -> TransformUtils.scaleInPlace(fct(f), 2d / (f.length - 1));
- } else {
- return normalization == Norm.ORTHO ?
- f -> TransformUtils.scaleInPlace(fct(f), Math.sqrt(2d / (f.length - 1))) :
- f -> fct(f);
- }
- }
- /**
- * Normalization types.
- */
- public enum Norm {
- /**
- * Should be passed to the constructor of {@link FastCosineTransform}
- * to use the <em>standard</em> normalization convention. The standard
- * DCT-I normalization convention is defined as follows
- * <ul>
- * <li>forward transform:
- * y<sub>n</sub> = (1/2) [x<sub>0</sub> + (-1)<sup>n</sup>x<sub>N-1</sub>]
- * + ∑<sub>k=1</sub><sup>N-2</sup>
- * x<sub>k</sub> cos[π nk / (N - 1)],</li>
- * <li>inverse transform:
- * x<sub>k</sub> = [1 / (N - 1)] [y<sub>0</sub>
- * + (-1)<sup>k</sup>y<sub>N-1</sub>]
- * + [2 / (N - 1)] ∑<sub>n=1</sub><sup>N-2</sup>
- * y<sub>n</sub> cos[π nk / (N - 1)],</li>
- * </ul>
- * where N is the size of the data sample.
- */
- STD,
- /**
- * Should be passed to the constructor of {@link FastCosineTransform}
- * to use the <em>orthogonal</em> normalization convention. The orthogonal
- * DCT-I normalization convention is defined as follows
- * <ul>
- * <li>forward transform:
- * y<sub>n</sub> = [2(N - 1)]<sup>-1/2</sup> [x<sub>0</sub>
- * + (-1)<sup>n</sup>x<sub>N-1</sub>]
- * + [2 / (N - 1)]<sup>1/2</sup> ∑<sub>k=1</sub><sup>N-2</sup>
- * x<sub>k</sub> cos[π nk / (N - 1)],</li>
- * <li>inverse transform:
- * x<sub>k</sub> = [2(N - 1)]<sup>-1/2</sup> [y<sub>0</sub>
- * + (-1)<sup>k</sup>y<sub>N-1</sub>]
- * + [2 / (N - 1)]<sup>1/2</sup> ∑<sub>n=1</sub><sup>N-2</sup>
- * y<sub>n</sub> cos[π nk / (N - 1)],</li>
- * </ul>
- * which makes the transform orthogonal. N is the size of the data sample.
- */
- ORTHO;
- }
- }