TransformUtils.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math4.transform;
- import java.util.function.DoubleUnaryOperator;
- import org.apache.commons.numbers.complex.Complex;
- /**
- * Useful functions for the implementation of various transforms.
- * Class is package-private (for internal use only).
- */
- final class TransformUtils {
- /** Number of array slots: 1 for "real" parts 1 for "imaginary" parts. */
- private static final int NUM_PARTS = 2;
- /** Utility class. */
- private TransformUtils() {}
- /**
- * Multiply every component in the given real array by the
- * given real number. The change is made in place.
- *
- * @param f Array to be scaled.
- * @param d Scaling coefficient.
- * @return a reference to the scaled array.
- */
- static double[] scaleInPlace(double[] f, double d) {
- for (int i = 0; i < f.length; i++) {
- f[i] *= d;
- }
- return f;
- }
- /**
- * Multiply every component in the given complex array by the
- * given real number. The change is made in place.
- *
- * @param f Array to be scaled.
- * @param d Scaling coefficient.
- * @return the scaled array.
- */
- static Complex[] scaleInPlace(Complex[] f, double d) {
- for (int i = 0; i < f.length; i++) {
- f[i] = Complex.ofCartesian(d * f[i].getReal(), d * f[i].getImaginary());
- }
- return f;
- }
- /**
- * Builds a new two dimensional array of {@code double} filled with the real
- * and imaginary parts of the specified {@link Complex} numbers. In the
- * returned array {@code dataRI}, the data is laid out as follows
- * <ul>
- * <li>{@code dataRI[0][i] = dataC[i].getReal()},</li>
- * <li>{@code dataRI[1][i] = dataC[i].getImaginary()}.</li>
- * </ul>
- *
- * @param dataC Array of {@link Complex} data to be transformed.
- * @return a two dimensional array filled with the real and imaginary parts
- * of the specified complex input.
- */
- static double[][] createRealImaginary(final Complex[] dataC) {
- final double[][] dataRI = new double[2][dataC.length];
- final double[] dataR = dataRI[0];
- final double[] dataI = dataRI[1];
- for (int i = 0; i < dataC.length; i++) {
- final Complex c = dataC[i];
- dataR[i] = c.getReal();
- dataI[i] = c.getImaginary();
- }
- return dataRI;
- }
- /**
- * Builds a new array of {@link Complex} from the specified two dimensional
- * array of real and imaginary parts. In the returned array {@code dataC},
- * the data is laid out as follows
- * <ul>
- * <li>{@code dataC[i].getReal() = dataRI[0][i]},</li>
- * <li>{@code dataC[i].getImaginary() = dataRI[1][i]}.</li>
- * </ul>
- *
- * @param dataRI Array of real and imaginary parts to be transformed.
- * @return a {@link Complex} array.
- * @throws IllegalArgumentException if the number of rows of the specified
- * array is not two, or the array is not rectangular.
- */
- static Complex[] createComplex(final double[][] dataRI) {
- if (dataRI.length != NUM_PARTS) {
- throw new TransformException(TransformException.SIZE_MISMATCH,
- dataRI.length, NUM_PARTS);
- }
- final double[] dataR = dataRI[0];
- final double[] dataI = dataRI[1];
- if (dataR.length != dataI.length) {
- throw new TransformException(TransformException.SIZE_MISMATCH,
- dataI.length, dataR.length);
- }
- final int n = dataR.length;
- final Complex[] c = new Complex[n];
- for (int i = 0; i < n; i++) {
- c[i] = Complex.ofCartesian(dataR[i], dataI[i]);
- }
- return c;
- }
- /**
- * Samples the specified univariate real function on the specified interval.
- * <p>
- * The interval is divided equally into {@code n} sections and sample points
- * are taken from {@code min} to {@code max - (max - min) / n}; therefore
- * {@code f} is not sampled at the upper bound {@code max}.</p>
- *
- * @param f Function to be sampled
- * @param min Lower bound of the interval (included).
- * @param max Upper bound of the interval (excluded).
- * @param n Number of sample points.
- * @return the array of samples.
- * @throws IllegalArgumentException if the lower bound {@code min} is
- * greater than, or equal to the upper bound {@code max}, if the number
- * of sample points {@code n} is negative.
- */
- static double[] sample(DoubleUnaryOperator f,
- double min,
- double max,
- int n) {
- if (n <= 0) {
- throw new TransformException(TransformException.NOT_STRICTLY_POSITIVE,
- Integer.valueOf(n));
- }
- if (min >= max) {
- throw new TransformException(TransformException.TOO_LARGE, min, max);
- }
- final double[] s = new double[n];
- final double h = (max - min) / n;
- for (int i = 0; i < n; i++) {
- s[i] = f.applyAsDouble(min + i * h);
- }
- return s;
- }
- }