001 /* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 package org.apache.commons.math3.analysis.interpolation; 018 019 import org.apache.commons.math3.exception.DimensionMismatchException; 020 import org.apache.commons.math3.exception.NoDataException; 021 import org.apache.commons.math3.exception.NonMonotonicSequenceException; 022 import org.apache.commons.math3.util.MathArrays; 023 024 /** 025 * Generates a tricubic interpolating function. 026 * 027 * @since 2.2 028 * @version $Id: TricubicSplineInterpolator.java 1379904 2012-09-01 23:54:52Z erans $ 029 */ 030 public class TricubicSplineInterpolator 031 implements TrivariateGridInterpolator { 032 /** 033 * {@inheritDoc} 034 */ 035 public TricubicSplineInterpolatingFunction interpolate(final double[] xval, 036 final double[] yval, 037 final double[] zval, 038 final double[][][] fval) 039 throws NoDataException, 040 DimensionMismatchException, 041 NonMonotonicSequenceException { 042 if (xval.length == 0 || yval.length == 0 || zval.length == 0 || fval.length == 0) { 043 throw new NoDataException(); 044 } 045 if (xval.length != fval.length) { 046 throw new DimensionMismatchException(xval.length, fval.length); 047 } 048 049 MathArrays.checkOrder(xval); 050 MathArrays.checkOrder(yval); 051 MathArrays.checkOrder(zval); 052 053 final int xLen = xval.length; 054 final int yLen = yval.length; 055 final int zLen = zval.length; 056 057 // Samples, re-ordered as (z, x, y) and (y, z, x) tuplets 058 // fvalXY[k][i][j] = f(xval[i], yval[j], zval[k]) 059 // fvalZX[j][k][i] = f(xval[i], yval[j], zval[k]) 060 final double[][][] fvalXY = new double[zLen][xLen][yLen]; 061 final double[][][] fvalZX = new double[yLen][zLen][xLen]; 062 for (int i = 0; i < xLen; i++) { 063 if (fval[i].length != yLen) { 064 throw new DimensionMismatchException(fval[i].length, yLen); 065 } 066 067 for (int j = 0; j < yLen; j++) { 068 if (fval[i][j].length != zLen) { 069 throw new DimensionMismatchException(fval[i][j].length, zLen); 070 } 071 072 for (int k = 0; k < zLen; k++) { 073 final double v = fval[i][j][k]; 074 fvalXY[k][i][j] = v; 075 fvalZX[j][k][i] = v; 076 } 077 } 078 } 079 080 final BicubicSplineInterpolator bsi = new BicubicSplineInterpolator(); 081 082 // For each line x[i] (0 <= i < xLen), construct a 2D spline in y and z 083 final BicubicSplineInterpolatingFunction[] xSplineYZ 084 = new BicubicSplineInterpolatingFunction[xLen]; 085 for (int i = 0; i < xLen; i++) { 086 xSplineYZ[i] = bsi.interpolate(yval, zval, fval[i]); 087 } 088 089 // For each line y[j] (0 <= j < yLen), construct a 2D spline in z and x 090 final BicubicSplineInterpolatingFunction[] ySplineZX 091 = new BicubicSplineInterpolatingFunction[yLen]; 092 for (int j = 0; j < yLen; j++) { 093 ySplineZX[j] = bsi.interpolate(zval, xval, fvalZX[j]); 094 } 095 096 // For each line z[k] (0 <= k < zLen), construct a 2D spline in x and y 097 final BicubicSplineInterpolatingFunction[] zSplineXY 098 = new BicubicSplineInterpolatingFunction[zLen]; 099 for (int k = 0; k < zLen; k++) { 100 zSplineXY[k] = bsi.interpolate(xval, yval, fvalXY[k]); 101 } 102 103 // Partial derivatives wrt x and wrt y 104 final double[][][] dFdX = new double[xLen][yLen][zLen]; 105 final double[][][] dFdY = new double[xLen][yLen][zLen]; 106 final double[][][] d2FdXdY = new double[xLen][yLen][zLen]; 107 for (int k = 0; k < zLen; k++) { 108 final BicubicSplineInterpolatingFunction f = zSplineXY[k]; 109 for (int i = 0; i < xLen; i++) { 110 final double x = xval[i]; 111 for (int j = 0; j < yLen; j++) { 112 final double y = yval[j]; 113 dFdX[i][j][k] = f.partialDerivativeX(x, y); 114 dFdY[i][j][k] = f.partialDerivativeY(x, y); 115 d2FdXdY[i][j][k] = f.partialDerivativeXY(x, y); 116 } 117 } 118 } 119 120 // Partial derivatives wrt y and wrt z 121 final double[][][] dFdZ = new double[xLen][yLen][zLen]; 122 final double[][][] d2FdYdZ = new double[xLen][yLen][zLen]; 123 for (int i = 0; i < xLen; i++) { 124 final BicubicSplineInterpolatingFunction f = xSplineYZ[i]; 125 for (int j = 0; j < yLen; j++) { 126 final double y = yval[j]; 127 for (int k = 0; k < zLen; k++) { 128 final double z = zval[k]; 129 dFdZ[i][j][k] = f.partialDerivativeY(y, z); 130 d2FdYdZ[i][j][k] = f.partialDerivativeXY(y, z); 131 } 132 } 133 } 134 135 // Partial derivatives wrt x and wrt z 136 final double[][][] d2FdZdX = new double[xLen][yLen][zLen]; 137 for (int j = 0; j < yLen; j++) { 138 final BicubicSplineInterpolatingFunction f = ySplineZX[j]; 139 for (int k = 0; k < zLen; k++) { 140 final double z = zval[k]; 141 for (int i = 0; i < xLen; i++) { 142 final double x = xval[i]; 143 d2FdZdX[i][j][k] = f.partialDerivativeXY(z, x); 144 } 145 } 146 } 147 148 // Third partial cross-derivatives 149 final double[][][] d3FdXdYdZ = new double[xLen][yLen][zLen]; 150 for (int i = 0; i < xLen ; i++) { 151 final int nI = nextIndex(i, xLen); 152 final int pI = previousIndex(i); 153 for (int j = 0; j < yLen; j++) { 154 final int nJ = nextIndex(j, yLen); 155 final int pJ = previousIndex(j); 156 for (int k = 0; k < zLen; k++) { 157 final int nK = nextIndex(k, zLen); 158 final int pK = previousIndex(k); 159 160 // XXX Not sure about this formula 161 d3FdXdYdZ[i][j][k] = (fval[nI][nJ][nK] - fval[nI][pJ][nK] - 162 fval[pI][nJ][nK] + fval[pI][pJ][nK] - 163 fval[nI][nJ][pK] + fval[nI][pJ][pK] + 164 fval[pI][nJ][pK] - fval[pI][pJ][pK]) / 165 ((xval[nI] - xval[pI]) * (yval[nJ] - yval[pJ]) * (zval[nK] - zval[pK])) ; 166 } 167 } 168 } 169 170 // Create the interpolating splines 171 return new TricubicSplineInterpolatingFunction(xval, yval, zval, fval, 172 dFdX, dFdY, dFdZ, 173 d2FdXdY, d2FdZdX, d2FdYdZ, 174 d3FdXdYdZ); 175 } 176 177 /** 178 * Compute the next index of an array, clipping if necessary. 179 * It is assumed (but not checked) that {@code i} is larger than or equal to 0}. 180 * 181 * @param i Index 182 * @param max Upper limit of the array 183 * @return the next index 184 */ 185 private int nextIndex(int i, int max) { 186 final int index = i + 1; 187 return index < max ? index : index - 1; 188 } 189 /** 190 * Compute the previous index of an array, clipping if necessary. 191 * It is assumed (but not checked) that {@code i} is smaller than the size of the array. 192 * 193 * @param i Index 194 * @return the previous index 195 */ 196 private int previousIndex(int i) { 197 final int index = i - 1; 198 return index >= 0 ? index : 0; 199 } 200 }