001 /* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 018 package org.apache.commons.math3.analysis.solvers; 019 020 /** 021 * Implements the <em>Regula Falsi</em> or <em>False position</em> method for 022 * root-finding (approximating a zero of a univariate real function). It is a 023 * modified {@link SecantSolver <em>Secant</em>} method. 024 * 025 * <p>The <em>Regula Falsi</em> method is included for completeness, for 026 * testing purposes, for educational purposes, for comparison to other 027 * algorithms, etc. It is however <strong>not</strong> intended to be used 028 * for actual problems, as one of the bounds often remains fixed, resulting 029 * in very slow convergence. Instead, one of the well-known modified 030 * <em>Regula Falsi</em> algorithms can be used ({@link IllinoisSolver 031 * <em>Illinois</em>} or {@link PegasusSolver <em>Pegasus</em>}). These two 032 * algorithms solve the fundamental issues of the original <em>Regula 033 * Falsi</em> algorithm, and greatly out-performs it for most, if not all, 034 * (practical) functions. 035 * 036 * <p>Unlike the <em>Secant</em> method, the <em>Regula Falsi</em> guarantees 037 * convergence, by maintaining a bracketed solution. Note however, that due to 038 * the finite/limited precision of Java's {@link Double double} type, which is 039 * used in this implementation, the algorithm may get stuck in a situation 040 * where it no longer makes any progress. Such cases are detected and result 041 * in a {@code ConvergenceException} exception being thrown. In other words, 042 * the algorithm theoretically guarantees convergence, but the implementation 043 * does not.</p> 044 * 045 * <p>The <em>Regula Falsi</em> method assumes that the function is continuous, 046 * but not necessarily smooth.</p> 047 * 048 * <p>Implementation based on the following article: M. Dowell and P. Jarratt, 049 * <em>A modified regula falsi method for computing the root of an 050 * equation</em>, BIT Numerical Mathematics, volume 11, number 2, 051 * pages 168-174, Springer, 1971.</p> 052 * 053 * @since 3.0 054 * @version $Id: RegulaFalsiSolver.java 1364387 2012-07-22 18:14:11Z tn $ 055 */ 056 public class RegulaFalsiSolver extends BaseSecantSolver { 057 058 /** Construct a solver with default accuracy (1e-6). */ 059 public RegulaFalsiSolver() { 060 super(DEFAULT_ABSOLUTE_ACCURACY, Method.REGULA_FALSI); 061 } 062 063 /** 064 * Construct a solver. 065 * 066 * @param absoluteAccuracy Absolute accuracy. 067 */ 068 public RegulaFalsiSolver(final double absoluteAccuracy) { 069 super(absoluteAccuracy, Method.REGULA_FALSI); 070 } 071 072 /** 073 * Construct a solver. 074 * 075 * @param relativeAccuracy Relative accuracy. 076 * @param absoluteAccuracy Absolute accuracy. 077 */ 078 public RegulaFalsiSolver(final double relativeAccuracy, 079 final double absoluteAccuracy) { 080 super(relativeAccuracy, absoluteAccuracy, Method.REGULA_FALSI); 081 } 082 083 /** 084 * Construct a solver. 085 * 086 * @param relativeAccuracy Relative accuracy. 087 * @param absoluteAccuracy Absolute accuracy. 088 * @param functionValueAccuracy Maximum function value error. 089 */ 090 public RegulaFalsiSolver(final double relativeAccuracy, 091 final double absoluteAccuracy, 092 final double functionValueAccuracy) { 093 super(relativeAccuracy, absoluteAccuracy, functionValueAccuracy, Method.REGULA_FALSI); 094 } 095 }