001 /* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 018 package org.apache.commons.math3.ode.nonstiff; 019 020 import org.apache.commons.math3.exception.DimensionMismatchException; 021 import org.apache.commons.math3.exception.MaxCountExceededException; 022 import org.apache.commons.math3.exception.NoBracketingException; 023 import org.apache.commons.math3.exception.NumberIsTooSmallException; 024 import org.apache.commons.math3.linear.Array2DRowRealMatrix; 025 import org.apache.commons.math3.ode.ExpandableStatefulODE; 026 import org.apache.commons.math3.ode.sampling.NordsieckStepInterpolator; 027 import org.apache.commons.math3.util.FastMath; 028 029 030 /** 031 * This class implements explicit Adams-Bashforth integrators for Ordinary 032 * Differential Equations. 033 * 034 * <p>Adams-Bashforth methods (in fact due to Adams alone) are explicit 035 * multistep ODE solvers. This implementation is a variation of the classical 036 * one: it uses adaptive stepsize to implement error control, whereas 037 * classical implementations are fixed step size. The value of state vector 038 * at step n+1 is a simple combination of the value at step n and of the 039 * derivatives at steps n, n-1, n-2 ... Depending on the number k of previous 040 * steps one wants to use for computing the next value, different formulas 041 * are available:</p> 042 * <ul> 043 * <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + h y'<sub>n</sub></li> 044 * <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + h (3y'<sub>n</sub>-y'<sub>n-1</sub>)/2</li> 045 * <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + h (23y'<sub>n</sub>-16y'<sub>n-1</sub>+5y'<sub>n-2</sub>)/12</li> 046 * <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + h (55y'<sub>n</sub>-59y'<sub>n-1</sub>+37y'<sub>n-2</sub>-9y'<sub>n-3</sub>)/24</li> 047 * <li>...</li> 048 * </ul> 049 * 050 * <p>A k-steps Adams-Bashforth method is of order k.</p> 051 * 052 * <h3>Implementation details</h3> 053 * 054 * <p>We define scaled derivatives s<sub>i</sub>(n) at step n as: 055 * <pre> 056 * s<sub>1</sub>(n) = h y'<sub>n</sub> for first derivative 057 * s<sub>2</sub>(n) = h<sup>2</sup>/2 y''<sub>n</sub> for second derivative 058 * s<sub>3</sub>(n) = h<sup>3</sup>/6 y'''<sub>n</sub> for third derivative 059 * ... 060 * s<sub>k</sub>(n) = h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub> for k<sup>th</sup> derivative 061 * </pre></p> 062 * 063 * <p>The definitions above use the classical representation with several previous first 064 * derivatives. Lets define 065 * <pre> 066 * q<sub>n</sub> = [ s<sub>1</sub>(n-1) s<sub>1</sub>(n-2) ... s<sub>1</sub>(n-(k-1)) ]<sup>T</sup> 067 * </pre> 068 * (we omit the k index in the notation for clarity). With these definitions, 069 * Adams-Bashforth methods can be written: 070 * <ul> 071 * <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n)</li> 072 * <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + 3/2 s<sub>1</sub>(n) + [ -1/2 ] q<sub>n</sub></li> 073 * <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + 23/12 s<sub>1</sub>(n) + [ -16/12 5/12 ] q<sub>n</sub></li> 074 * <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + 55/24 s<sub>1</sub>(n) + [ -59/24 37/24 -9/24 ] q<sub>n</sub></li> 075 * <li>...</li> 076 * </ul></p> 077 * 078 * <p>Instead of using the classical representation with first derivatives only (y<sub>n</sub>, 079 * s<sub>1</sub>(n) and q<sub>n</sub>), our implementation uses the Nordsieck vector with 080 * higher degrees scaled derivatives all taken at the same step (y<sub>n</sub>, s<sub>1</sub>(n) 081 * and r<sub>n</sub>) where r<sub>n</sub> is defined as: 082 * <pre> 083 * r<sub>n</sub> = [ s<sub>2</sub>(n), s<sub>3</sub>(n) ... s<sub>k</sub>(n) ]<sup>T</sup> 084 * </pre> 085 * (here again we omit the k index in the notation for clarity) 086 * </p> 087 * 088 * <p>Taylor series formulas show that for any index offset i, s<sub>1</sub>(n-i) can be 089 * computed from s<sub>1</sub>(n), s<sub>2</sub>(n) ... s<sub>k</sub>(n), the formula being exact 090 * for degree k polynomials. 091 * <pre> 092 * s<sub>1</sub>(n-i) = s<sub>1</sub>(n) + ∑<sub>j</sub> j (-i)<sup>j-1</sup> s<sub>j</sub>(n) 093 * </pre> 094 * The previous formula can be used with several values for i to compute the transform between 095 * classical representation and Nordsieck vector. The transform between r<sub>n</sub> 096 * and q<sub>n</sub> resulting from the Taylor series formulas above is: 097 * <pre> 098 * q<sub>n</sub> = s<sub>1</sub>(n) u + P r<sub>n</sub> 099 * </pre> 100 * where u is the [ 1 1 ... 1 ]<sup>T</sup> vector and P is the (k-1)×(k-1) matrix built 101 * with the j (-i)<sup>j-1</sup> terms: 102 * <pre> 103 * [ -2 3 -4 5 ... ] 104 * [ -4 12 -32 80 ... ] 105 * P = [ -6 27 -108 405 ... ] 106 * [ -8 48 -256 1280 ... ] 107 * [ ... ] 108 * </pre></p> 109 * 110 * <p>Using the Nordsieck vector has several advantages: 111 * <ul> 112 * <li>it greatly simplifies step interpolation as the interpolator mainly applies 113 * Taylor series formulas,</li> 114 * <li>it simplifies step changes that occur when discrete events that truncate 115 * the step are triggered,</li> 116 * <li>it allows to extend the methods in order to support adaptive stepsize.</li> 117 * </ul></p> 118 * 119 * <p>The Nordsieck vector at step n+1 is computed from the Nordsieck vector at step n as follows: 120 * <ul> 121 * <li>y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li> 122 * <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li> 123 * <li>r<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li> 124 * </ul> 125 * where A is a rows shifting matrix (the lower left part is an identity matrix): 126 * <pre> 127 * [ 0 0 ... 0 0 | 0 ] 128 * [ ---------------+---] 129 * [ 1 0 ... 0 0 | 0 ] 130 * A = [ 0 1 ... 0 0 | 0 ] 131 * [ ... | 0 ] 132 * [ 0 0 ... 1 0 | 0 ] 133 * [ 0 0 ... 0 1 | 0 ] 134 * </pre></p> 135 * 136 * <p>The P<sup>-1</sup>u vector and the P<sup>-1</sup> A P matrix do not depend on the state, 137 * they only depend on k and therefore are precomputed once for all.</p> 138 * 139 * @version $Id: AdamsBashforthIntegrator.java 1416643 2012-12-03 19:37:14Z tn $ 140 * @since 2.0 141 */ 142 public class AdamsBashforthIntegrator extends AdamsIntegrator { 143 144 /** Integrator method name. */ 145 private static final String METHOD_NAME = "Adams-Bashforth"; 146 147 /** 148 * Build an Adams-Bashforth integrator with the given order and step control parameters. 149 * @param nSteps number of steps of the method excluding the one being computed 150 * @param minStep minimal step (sign is irrelevant, regardless of 151 * integration direction, forward or backward), the last step can 152 * be smaller than this 153 * @param maxStep maximal step (sign is irrelevant, regardless of 154 * integration direction, forward or backward), the last step can 155 * be smaller than this 156 * @param scalAbsoluteTolerance allowed absolute error 157 * @param scalRelativeTolerance allowed relative error 158 * @exception NumberIsTooSmallException if order is 1 or less 159 */ 160 public AdamsBashforthIntegrator(final int nSteps, 161 final double minStep, final double maxStep, 162 final double scalAbsoluteTolerance, 163 final double scalRelativeTolerance) 164 throws NumberIsTooSmallException { 165 super(METHOD_NAME, nSteps, nSteps, minStep, maxStep, 166 scalAbsoluteTolerance, scalRelativeTolerance); 167 } 168 169 /** 170 * Build an Adams-Bashforth integrator with the given order and step control parameters. 171 * @param nSteps number of steps of the method excluding the one being computed 172 * @param minStep minimal step (sign is irrelevant, regardless of 173 * integration direction, forward or backward), the last step can 174 * be smaller than this 175 * @param maxStep maximal step (sign is irrelevant, regardless of 176 * integration direction, forward or backward), the last step can 177 * be smaller than this 178 * @param vecAbsoluteTolerance allowed absolute error 179 * @param vecRelativeTolerance allowed relative error 180 * @exception IllegalArgumentException if order is 1 or less 181 */ 182 public AdamsBashforthIntegrator(final int nSteps, 183 final double minStep, final double maxStep, 184 final double[] vecAbsoluteTolerance, 185 final double[] vecRelativeTolerance) 186 throws IllegalArgumentException { 187 super(METHOD_NAME, nSteps, nSteps, minStep, maxStep, 188 vecAbsoluteTolerance, vecRelativeTolerance); 189 } 190 191 /** {@inheritDoc} */ 192 @Override 193 public void integrate(final ExpandableStatefulODE equations, final double t) 194 throws NumberIsTooSmallException, DimensionMismatchException, 195 MaxCountExceededException, NoBracketingException { 196 197 sanityChecks(equations, t); 198 setEquations(equations); 199 final boolean forward = t > equations.getTime(); 200 201 // initialize working arrays 202 final double[] y0 = equations.getCompleteState(); 203 final double[] y = y0.clone(); 204 final double[] yDot = new double[y.length]; 205 206 // set up an interpolator sharing the integrator arrays 207 final NordsieckStepInterpolator interpolator = new NordsieckStepInterpolator(); 208 interpolator.reinitialize(y, forward, 209 equations.getPrimaryMapper(), equations.getSecondaryMappers()); 210 211 // set up integration control objects 212 initIntegration(equations.getTime(), y0, t); 213 214 // compute the initial Nordsieck vector using the configured starter integrator 215 start(equations.getTime(), y, t); 216 interpolator.reinitialize(stepStart, stepSize, scaled, nordsieck); 217 interpolator.storeTime(stepStart); 218 final int lastRow = nordsieck.getRowDimension() - 1; 219 220 // reuse the step that was chosen by the starter integrator 221 double hNew = stepSize; 222 interpolator.rescale(hNew); 223 224 // main integration loop 225 isLastStep = false; 226 do { 227 228 double error = 10; 229 while (error >= 1.0) { 230 231 stepSize = hNew; 232 233 // evaluate error using the last term of the Taylor expansion 234 error = 0; 235 for (int i = 0; i < mainSetDimension; ++i) { 236 final double yScale = FastMath.abs(y[i]); 237 final double tol = (vecAbsoluteTolerance == null) ? 238 (scalAbsoluteTolerance + scalRelativeTolerance * yScale) : 239 (vecAbsoluteTolerance[i] + vecRelativeTolerance[i] * yScale); 240 final double ratio = nordsieck.getEntry(lastRow, i) / tol; 241 error += ratio * ratio; 242 } 243 error = FastMath.sqrt(error / mainSetDimension); 244 245 if (error >= 1.0) { 246 // reject the step and attempt to reduce error by stepsize control 247 final double factor = computeStepGrowShrinkFactor(error); 248 hNew = filterStep(stepSize * factor, forward, false); 249 interpolator.rescale(hNew); 250 251 } 252 } 253 254 // predict a first estimate of the state at step end 255 final double stepEnd = stepStart + stepSize; 256 interpolator.shift(); 257 interpolator.setInterpolatedTime(stepEnd); 258 System.arraycopy(interpolator.getInterpolatedState(), 0, y, 0, y0.length); 259 260 // evaluate the derivative 261 computeDerivatives(stepEnd, y, yDot); 262 263 // update Nordsieck vector 264 final double[] predictedScaled = new double[y0.length]; 265 for (int j = 0; j < y0.length; ++j) { 266 predictedScaled[j] = stepSize * yDot[j]; 267 } 268 final Array2DRowRealMatrix nordsieckTmp = updateHighOrderDerivativesPhase1(nordsieck); 269 updateHighOrderDerivativesPhase2(scaled, predictedScaled, nordsieckTmp); 270 interpolator.reinitialize(stepEnd, stepSize, predictedScaled, nordsieckTmp); 271 272 // discrete events handling 273 interpolator.storeTime(stepEnd); 274 stepStart = acceptStep(interpolator, y, yDot, t); 275 scaled = predictedScaled; 276 nordsieck = nordsieckTmp; 277 interpolator.reinitialize(stepEnd, stepSize, scaled, nordsieck); 278 279 if (!isLastStep) { 280 281 // prepare next step 282 interpolator.storeTime(stepStart); 283 284 if (resetOccurred) { 285 // some events handler has triggered changes that 286 // invalidate the derivatives, we need to restart from scratch 287 start(stepStart, y, t); 288 interpolator.reinitialize(stepStart, stepSize, scaled, nordsieck); 289 } 290 291 // stepsize control for next step 292 final double factor = computeStepGrowShrinkFactor(error); 293 final double scaledH = stepSize * factor; 294 final double nextT = stepStart + scaledH; 295 final boolean nextIsLast = forward ? (nextT >= t) : (nextT <= t); 296 hNew = filterStep(scaledH, forward, nextIsLast); 297 298 final double filteredNextT = stepStart + hNew; 299 final boolean filteredNextIsLast = forward ? (filteredNextT >= t) : (filteredNextT <= t); 300 if (filteredNextIsLast) { 301 hNew = t - stepStart; 302 } 303 304 interpolator.rescale(hNew); 305 306 } 307 308 } while (!isLastStep); 309 310 // dispatch results 311 equations.setTime(stepStart); 312 equations.setCompleteState(y); 313 314 resetInternalState(); 315 316 } 317 318 }