001 /* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 018 package org.apache.commons.math3.ode.nonstiff; 019 020 import java.util.Arrays; 021 022 import org.apache.commons.math3.exception.DimensionMismatchException; 023 import org.apache.commons.math3.exception.MaxCountExceededException; 024 import org.apache.commons.math3.exception.NoBracketingException; 025 import org.apache.commons.math3.exception.NumberIsTooSmallException; 026 import org.apache.commons.math3.linear.Array2DRowRealMatrix; 027 import org.apache.commons.math3.linear.RealMatrixPreservingVisitor; 028 import org.apache.commons.math3.ode.ExpandableStatefulODE; 029 import org.apache.commons.math3.ode.sampling.NordsieckStepInterpolator; 030 import org.apache.commons.math3.util.FastMath; 031 032 033 /** 034 * This class implements implicit Adams-Moulton integrators for Ordinary 035 * Differential Equations. 036 * 037 * <p>Adams-Moulton methods (in fact due to Adams alone) are implicit 038 * multistep ODE solvers. This implementation is a variation of the classical 039 * one: it uses adaptive stepsize to implement error control, whereas 040 * classical implementations are fixed step size. The value of state vector 041 * at step n+1 is a simple combination of the value at step n and of the 042 * derivatives at steps n+1, n, n-1 ... Since y'<sub>n+1</sub> is needed to 043 * compute y<sub>n+1</sub>, another method must be used to compute a first 044 * estimate of y<sub>n+1</sub>, then compute y'<sub>n+1</sub>, then compute 045 * a final estimate of y<sub>n+1</sub> using the following formulas. Depending 046 * on the number k of previous steps one wants to use for computing the next 047 * value, different formulas are available for the final estimate:</p> 048 * <ul> 049 * <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + h y'<sub>n+1</sub></li> 050 * <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + h (y'<sub>n+1</sub>+y'<sub>n</sub>)/2</li> 051 * <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + h (5y'<sub>n+1</sub>+8y'<sub>n</sub>-y'<sub>n-1</sub>)/12</li> 052 * <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + h (9y'<sub>n+1</sub>+19y'<sub>n</sub>-5y'<sub>n-1</sub>+y'<sub>n-2</sub>)/24</li> 053 * <li>...</li> 054 * </ul> 055 * 056 * <p>A k-steps Adams-Moulton method is of order k+1.</p> 057 * 058 * <h3>Implementation details</h3> 059 * 060 * <p>We define scaled derivatives s<sub>i</sub>(n) at step n as: 061 * <pre> 062 * s<sub>1</sub>(n) = h y'<sub>n</sub> for first derivative 063 * s<sub>2</sub>(n) = h<sup>2</sup>/2 y''<sub>n</sub> for second derivative 064 * s<sub>3</sub>(n) = h<sup>3</sup>/6 y'''<sub>n</sub> for third derivative 065 * ... 066 * s<sub>k</sub>(n) = h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub> for k<sup>th</sup> derivative 067 * </pre></p> 068 * 069 * <p>The definitions above use the classical representation with several previous first 070 * derivatives. Lets define 071 * <pre> 072 * q<sub>n</sub> = [ s<sub>1</sub>(n-1) s<sub>1</sub>(n-2) ... s<sub>1</sub>(n-(k-1)) ]<sup>T</sup> 073 * </pre> 074 * (we omit the k index in the notation for clarity). With these definitions, 075 * Adams-Moulton methods can be written: 076 * <ul> 077 * <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n+1)</li> 078 * <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + 1/2 s<sub>1</sub>(n+1) + [ 1/2 ] q<sub>n+1</sub></li> 079 * <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + 5/12 s<sub>1</sub>(n+1) + [ 8/12 -1/12 ] q<sub>n+1</sub></li> 080 * <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + 9/24 s<sub>1</sub>(n+1) + [ 19/24 -5/24 1/24 ] q<sub>n+1</sub></li> 081 * <li>...</li> 082 * </ul></p> 083 * 084 * <p>Instead of using the classical representation with first derivatives only (y<sub>n</sub>, 085 * s<sub>1</sub>(n+1) and q<sub>n+1</sub>), our implementation uses the Nordsieck vector with 086 * higher degrees scaled derivatives all taken at the same step (y<sub>n</sub>, s<sub>1</sub>(n) 087 * and r<sub>n</sub>) where r<sub>n</sub> is defined as: 088 * <pre> 089 * r<sub>n</sub> = [ s<sub>2</sub>(n), s<sub>3</sub>(n) ... s<sub>k</sub>(n) ]<sup>T</sup> 090 * </pre> 091 * (here again we omit the k index in the notation for clarity) 092 * </p> 093 * 094 * <p>Taylor series formulas show that for any index offset i, s<sub>1</sub>(n-i) can be 095 * computed from s<sub>1</sub>(n), s<sub>2</sub>(n) ... s<sub>k</sub>(n), the formula being exact 096 * for degree k polynomials. 097 * <pre> 098 * s<sub>1</sub>(n-i) = s<sub>1</sub>(n) + ∑<sub>j</sub> j (-i)<sup>j-1</sup> s<sub>j</sub>(n) 099 * </pre> 100 * The previous formula can be used with several values for i to compute the transform between 101 * classical representation and Nordsieck vector. The transform between r<sub>n</sub> 102 * and q<sub>n</sub> resulting from the Taylor series formulas above is: 103 * <pre> 104 * q<sub>n</sub> = s<sub>1</sub>(n) u + P r<sub>n</sub> 105 * </pre> 106 * where u is the [ 1 1 ... 1 ]<sup>T</sup> vector and P is the (k-1)×(k-1) matrix built 107 * with the j (-i)<sup>j-1</sup> terms: 108 * <pre> 109 * [ -2 3 -4 5 ... ] 110 * [ -4 12 -32 80 ... ] 111 * P = [ -6 27 -108 405 ... ] 112 * [ -8 48 -256 1280 ... ] 113 * [ ... ] 114 * </pre></p> 115 * 116 * <p>Using the Nordsieck vector has several advantages: 117 * <ul> 118 * <li>it greatly simplifies step interpolation as the interpolator mainly applies 119 * Taylor series formulas,</li> 120 * <li>it simplifies step changes that occur when discrete events that truncate 121 * the step are triggered,</li> 122 * <li>it allows to extend the methods in order to support adaptive stepsize.</li> 123 * </ul></p> 124 * 125 * <p>The predicted Nordsieck vector at step n+1 is computed from the Nordsieck vector at step 126 * n as follows: 127 * <ul> 128 * <li>Y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li> 129 * <li>S<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, Y<sub>n+1</sub>)</li> 130 * <li>R<sub>n+1</sub> = (s<sub>1</sub>(n) - S<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li> 131 * </ul> 132 * where A is a rows shifting matrix (the lower left part is an identity matrix): 133 * <pre> 134 * [ 0 0 ... 0 0 | 0 ] 135 * [ ---------------+---] 136 * [ 1 0 ... 0 0 | 0 ] 137 * A = [ 0 1 ... 0 0 | 0 ] 138 * [ ... | 0 ] 139 * [ 0 0 ... 1 0 | 0 ] 140 * [ 0 0 ... 0 1 | 0 ] 141 * </pre> 142 * From this predicted vector, the corrected vector is computed as follows: 143 * <ul> 144 * <li>y<sub>n+1</sub> = y<sub>n</sub> + S<sub>1</sub>(n+1) + [ -1 +1 -1 +1 ... ±1 ] r<sub>n+1</sub></li> 145 * <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li> 146 * <li>r<sub>n+1</sub> = R<sub>n+1</sub> + (s<sub>1</sub>(n+1) - S<sub>1</sub>(n+1)) P<sup>-1</sup> u</li> 147 * </ul> 148 * where the upper case Y<sub>n+1</sub>, S<sub>1</sub>(n+1) and R<sub>n+1</sub> represent the 149 * predicted states whereas the lower case y<sub>n+1</sub>, s<sub>n+1</sub> and r<sub>n+1</sub> 150 * represent the corrected states.</p> 151 * 152 * <p>The P<sup>-1</sup>u vector and the P<sup>-1</sup> A P matrix do not depend on the state, 153 * they only depend on k and therefore are precomputed once for all.</p> 154 * 155 * @version $Id: AdamsMoultonIntegrator.java 1416643 2012-12-03 19:37:14Z tn $ 156 * @since 2.0 157 */ 158 public class AdamsMoultonIntegrator extends AdamsIntegrator { 159 160 /** Integrator method name. */ 161 private static final String METHOD_NAME = "Adams-Moulton"; 162 163 /** 164 * Build an Adams-Moulton integrator with the given order and error control parameters. 165 * @param nSteps number of steps of the method excluding the one being computed 166 * @param minStep minimal step (sign is irrelevant, regardless of 167 * integration direction, forward or backward), the last step can 168 * be smaller than this 169 * @param maxStep maximal step (sign is irrelevant, regardless of 170 * integration direction, forward or backward), the last step can 171 * be smaller than this 172 * @param scalAbsoluteTolerance allowed absolute error 173 * @param scalRelativeTolerance allowed relative error 174 * @exception NumberIsTooSmallException if order is 1 or less 175 */ 176 public AdamsMoultonIntegrator(final int nSteps, 177 final double minStep, final double maxStep, 178 final double scalAbsoluteTolerance, 179 final double scalRelativeTolerance) 180 throws NumberIsTooSmallException { 181 super(METHOD_NAME, nSteps, nSteps + 1, minStep, maxStep, 182 scalAbsoluteTolerance, scalRelativeTolerance); 183 } 184 185 /** 186 * Build an Adams-Moulton integrator with the given order and error control parameters. 187 * @param nSteps number of steps of the method excluding the one being computed 188 * @param minStep minimal step (sign is irrelevant, regardless of 189 * integration direction, forward or backward), the last step can 190 * be smaller than this 191 * @param maxStep maximal step (sign is irrelevant, regardless of 192 * integration direction, forward or backward), the last step can 193 * be smaller than this 194 * @param vecAbsoluteTolerance allowed absolute error 195 * @param vecRelativeTolerance allowed relative error 196 * @exception IllegalArgumentException if order is 1 or less 197 */ 198 public AdamsMoultonIntegrator(final int nSteps, 199 final double minStep, final double maxStep, 200 final double[] vecAbsoluteTolerance, 201 final double[] vecRelativeTolerance) 202 throws IllegalArgumentException { 203 super(METHOD_NAME, nSteps, nSteps + 1, minStep, maxStep, 204 vecAbsoluteTolerance, vecRelativeTolerance); 205 } 206 207 208 /** {@inheritDoc} */ 209 @Override 210 public void integrate(final ExpandableStatefulODE equations,final double t) 211 throws NumberIsTooSmallException, DimensionMismatchException, 212 MaxCountExceededException, NoBracketingException { 213 214 sanityChecks(equations, t); 215 setEquations(equations); 216 final boolean forward = t > equations.getTime(); 217 218 // initialize working arrays 219 final double[] y0 = equations.getCompleteState(); 220 final double[] y = y0.clone(); 221 final double[] yDot = new double[y.length]; 222 final double[] yTmp = new double[y.length]; 223 final double[] predictedScaled = new double[y.length]; 224 Array2DRowRealMatrix nordsieckTmp = null; 225 226 // set up two interpolators sharing the integrator arrays 227 final NordsieckStepInterpolator interpolator = new NordsieckStepInterpolator(); 228 interpolator.reinitialize(y, forward, 229 equations.getPrimaryMapper(), equations.getSecondaryMappers()); 230 231 // set up integration control objects 232 initIntegration(equations.getTime(), y0, t); 233 234 // compute the initial Nordsieck vector using the configured starter integrator 235 start(equations.getTime(), y, t); 236 interpolator.reinitialize(stepStart, stepSize, scaled, nordsieck); 237 interpolator.storeTime(stepStart); 238 239 double hNew = stepSize; 240 interpolator.rescale(hNew); 241 242 isLastStep = false; 243 do { 244 245 double error = 10; 246 while (error >= 1.0) { 247 248 stepSize = hNew; 249 250 // predict a first estimate of the state at step end (P in the PECE sequence) 251 final double stepEnd = stepStart + stepSize; 252 interpolator.setInterpolatedTime(stepEnd); 253 System.arraycopy(interpolator.getInterpolatedState(), 0, yTmp, 0, y0.length); 254 255 // evaluate a first estimate of the derivative (first E in the PECE sequence) 256 computeDerivatives(stepEnd, yTmp, yDot); 257 258 // update Nordsieck vector 259 for (int j = 0; j < y0.length; ++j) { 260 predictedScaled[j] = stepSize * yDot[j]; 261 } 262 nordsieckTmp = updateHighOrderDerivativesPhase1(nordsieck); 263 updateHighOrderDerivativesPhase2(scaled, predictedScaled, nordsieckTmp); 264 265 // apply correction (C in the PECE sequence) 266 error = nordsieckTmp.walkInOptimizedOrder(new Corrector(y, predictedScaled, yTmp)); 267 268 if (error >= 1.0) { 269 // reject the step and attempt to reduce error by stepsize control 270 final double factor = computeStepGrowShrinkFactor(error); 271 hNew = filterStep(stepSize * factor, forward, false); 272 interpolator.rescale(hNew); 273 } 274 } 275 276 // evaluate a final estimate of the derivative (second E in the PECE sequence) 277 final double stepEnd = stepStart + stepSize; 278 computeDerivatives(stepEnd, yTmp, yDot); 279 280 // update Nordsieck vector 281 final double[] correctedScaled = new double[y0.length]; 282 for (int j = 0; j < y0.length; ++j) { 283 correctedScaled[j] = stepSize * yDot[j]; 284 } 285 updateHighOrderDerivativesPhase2(predictedScaled, correctedScaled, nordsieckTmp); 286 287 // discrete events handling 288 System.arraycopy(yTmp, 0, y, 0, y.length); 289 interpolator.reinitialize(stepEnd, stepSize, correctedScaled, nordsieckTmp); 290 interpolator.storeTime(stepStart); 291 interpolator.shift(); 292 interpolator.storeTime(stepEnd); 293 stepStart = acceptStep(interpolator, y, yDot, t); 294 scaled = correctedScaled; 295 nordsieck = nordsieckTmp; 296 297 if (!isLastStep) { 298 299 // prepare next step 300 interpolator.storeTime(stepStart); 301 302 if (resetOccurred) { 303 // some events handler has triggered changes that 304 // invalidate the derivatives, we need to restart from scratch 305 start(stepStart, y, t); 306 interpolator.reinitialize(stepStart, stepSize, scaled, nordsieck); 307 308 } 309 310 // stepsize control for next step 311 final double factor = computeStepGrowShrinkFactor(error); 312 final double scaledH = stepSize * factor; 313 final double nextT = stepStart + scaledH; 314 final boolean nextIsLast = forward ? (nextT >= t) : (nextT <= t); 315 hNew = filterStep(scaledH, forward, nextIsLast); 316 317 final double filteredNextT = stepStart + hNew; 318 final boolean filteredNextIsLast = forward ? (filteredNextT >= t) : (filteredNextT <= t); 319 if (filteredNextIsLast) { 320 hNew = t - stepStart; 321 } 322 323 interpolator.rescale(hNew); 324 } 325 326 } while (!isLastStep); 327 328 // dispatch results 329 equations.setTime(stepStart); 330 equations.setCompleteState(y); 331 332 resetInternalState(); 333 334 } 335 336 /** Corrector for current state in Adams-Moulton method. 337 * <p> 338 * This visitor implements the Taylor series formula: 339 * <pre> 340 * Y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n+1) + [ -1 +1 -1 +1 ... ±1 ] r<sub>n+1</sub> 341 * </pre> 342 * </p> 343 */ 344 private class Corrector implements RealMatrixPreservingVisitor { 345 346 /** Previous state. */ 347 private final double[] previous; 348 349 /** Current scaled first derivative. */ 350 private final double[] scaled; 351 352 /** Current state before correction. */ 353 private final double[] before; 354 355 /** Current state after correction. */ 356 private final double[] after; 357 358 /** Simple constructor. 359 * @param previous previous state 360 * @param scaled current scaled first derivative 361 * @param state state to correct (will be overwritten after visit) 362 */ 363 public Corrector(final double[] previous, final double[] scaled, final double[] state) { 364 this.previous = previous; 365 this.scaled = scaled; 366 this.after = state; 367 this.before = state.clone(); 368 } 369 370 /** {@inheritDoc} */ 371 public void start(int rows, int columns, 372 int startRow, int endRow, int startColumn, int endColumn) { 373 Arrays.fill(after, 0.0); 374 } 375 376 /** {@inheritDoc} */ 377 public void visit(int row, int column, double value) { 378 if ((row & 0x1) == 0) { 379 after[column] -= value; 380 } else { 381 after[column] += value; 382 } 383 } 384 385 /** 386 * End visiting the Nordsieck vector. 387 * <p>The correction is used to control stepsize. So its amplitude is 388 * considered to be an error, which must be normalized according to 389 * error control settings. If the normalized value is greater than 1, 390 * the correction was too large and the step must be rejected.</p> 391 * @return the normalized correction, if greater than 1, the step 392 * must be rejected 393 */ 394 public double end() { 395 396 double error = 0; 397 for (int i = 0; i < after.length; ++i) { 398 after[i] += previous[i] + scaled[i]; 399 if (i < mainSetDimension) { 400 final double yScale = FastMath.max(FastMath.abs(previous[i]), FastMath.abs(after[i])); 401 final double tol = (vecAbsoluteTolerance == null) ? 402 (scalAbsoluteTolerance + scalRelativeTolerance * yScale) : 403 (vecAbsoluteTolerance[i] + vecRelativeTolerance[i] * yScale); 404 final double ratio = (after[i] - before[i]) / tol; 405 error += ratio * ratio; 406 } 407 } 408 409 return FastMath.sqrt(error / mainSetDimension); 410 411 } 412 } 413 414 }