001 /* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 018 package org.apache.commons.math3.ode.nonstiff; 019 020 import org.apache.commons.math3.util.FastMath; 021 022 023 /** 024 * This class implements the 5(4) Dormand-Prince integrator for Ordinary 025 * Differential Equations. 026 027 * <p>This integrator is an embedded Runge-Kutta integrator 028 * of order 5(4) used in local extrapolation mode (i.e. the solution 029 * is computed using the high order formula) with stepsize control 030 * (and automatic step initialization) and continuous output. This 031 * method uses 7 functions evaluations per step. However, since this 032 * is an <i>fsal</i>, the last evaluation of one step is the same as 033 * the first evaluation of the next step and hence can be avoided. So 034 * the cost is really 6 functions evaluations per step.</p> 035 * 036 * <p>This method has been published (whithout the continuous output 037 * that was added by Shampine in 1986) in the following article : 038 * <pre> 039 * A family of embedded Runge-Kutta formulae 040 * J. R. Dormand and P. J. Prince 041 * Journal of Computational and Applied Mathematics 042 * volume 6, no 1, 1980, pp. 19-26 043 * </pre></p> 044 * 045 * @version $Id: DormandPrince54Integrator.java 1416643 2012-12-03 19:37:14Z tn $ 046 * @since 1.2 047 */ 048 049 public class DormandPrince54Integrator extends EmbeddedRungeKuttaIntegrator { 050 051 /** Integrator method name. */ 052 private static final String METHOD_NAME = "Dormand-Prince 5(4)"; 053 054 /** Time steps Butcher array. */ 055 private static final double[] STATIC_C = { 056 1.0/5.0, 3.0/10.0, 4.0/5.0, 8.0/9.0, 1.0, 1.0 057 }; 058 059 /** Internal weights Butcher array. */ 060 private static final double[][] STATIC_A = { 061 {1.0/5.0}, 062 {3.0/40.0, 9.0/40.0}, 063 {44.0/45.0, -56.0/15.0, 32.0/9.0}, 064 {19372.0/6561.0, -25360.0/2187.0, 64448.0/6561.0, -212.0/729.0}, 065 {9017.0/3168.0, -355.0/33.0, 46732.0/5247.0, 49.0/176.0, -5103.0/18656.0}, 066 {35.0/384.0, 0.0, 500.0/1113.0, 125.0/192.0, -2187.0/6784.0, 11.0/84.0} 067 }; 068 069 /** Propagation weights Butcher array. */ 070 private static final double[] STATIC_B = { 071 35.0/384.0, 0.0, 500.0/1113.0, 125.0/192.0, -2187.0/6784.0, 11.0/84.0, 0.0 072 }; 073 074 /** Error array, element 1. */ 075 private static final double E1 = 71.0 / 57600.0; 076 077 // element 2 is zero, so it is neither stored nor used 078 079 /** Error array, element 3. */ 080 private static final double E3 = -71.0 / 16695.0; 081 082 /** Error array, element 4. */ 083 private static final double E4 = 71.0 / 1920.0; 084 085 /** Error array, element 5. */ 086 private static final double E5 = -17253.0 / 339200.0; 087 088 /** Error array, element 6. */ 089 private static final double E6 = 22.0 / 525.0; 090 091 /** Error array, element 7. */ 092 private static final double E7 = -1.0 / 40.0; 093 094 /** Simple constructor. 095 * Build a fifth order Dormand-Prince integrator with the given step bounds 096 * @param minStep minimal step (sign is irrelevant, regardless of 097 * integration direction, forward or backward), the last step can 098 * be smaller than this 099 * @param maxStep maximal step (sign is irrelevant, regardless of 100 * integration direction, forward or backward), the last step can 101 * be smaller than this 102 * @param scalAbsoluteTolerance allowed absolute error 103 * @param scalRelativeTolerance allowed relative error 104 */ 105 public DormandPrince54Integrator(final double minStep, final double maxStep, 106 final double scalAbsoluteTolerance, 107 final double scalRelativeTolerance) { 108 super(METHOD_NAME, true, STATIC_C, STATIC_A, STATIC_B, new DormandPrince54StepInterpolator(), 109 minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance); 110 } 111 112 /** Simple constructor. 113 * Build a fifth order Dormand-Prince integrator with the given step bounds 114 * @param minStep minimal step (sign is irrelevant, regardless of 115 * integration direction, forward or backward), the last step can 116 * be smaller than this 117 * @param maxStep maximal step (sign is irrelevant, regardless of 118 * integration direction, forward or backward), the last step can 119 * be smaller than this 120 * @param vecAbsoluteTolerance allowed absolute error 121 * @param vecRelativeTolerance allowed relative error 122 */ 123 public DormandPrince54Integrator(final double minStep, final double maxStep, 124 final double[] vecAbsoluteTolerance, 125 final double[] vecRelativeTolerance) { 126 super(METHOD_NAME, true, STATIC_C, STATIC_A, STATIC_B, new DormandPrince54StepInterpolator(), 127 minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance); 128 } 129 130 /** {@inheritDoc} */ 131 @Override 132 public int getOrder() { 133 return 5; 134 } 135 136 /** {@inheritDoc} */ 137 @Override 138 protected double estimateError(final double[][] yDotK, 139 final double[] y0, final double[] y1, 140 final double h) { 141 142 double error = 0; 143 144 for (int j = 0; j < mainSetDimension; ++j) { 145 final double errSum = E1 * yDotK[0][j] + E3 * yDotK[2][j] + 146 E4 * yDotK[3][j] + E5 * yDotK[4][j] + 147 E6 * yDotK[5][j] + E7 * yDotK[6][j]; 148 149 final double yScale = FastMath.max(FastMath.abs(y0[j]), FastMath.abs(y1[j])); 150 final double tol = (vecAbsoluteTolerance == null) ? 151 (scalAbsoluteTolerance + scalRelativeTolerance * yScale) : 152 (vecAbsoluteTolerance[j] + vecRelativeTolerance[j] * yScale); 153 final double ratio = h * errSum / tol; 154 error += ratio * ratio; 155 156 } 157 158 return FastMath.sqrt(error / mainSetDimension); 159 160 } 161 162 }