001 /* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 package org.apache.commons.math3.stat.correlation; 018 019 import org.apache.commons.math3.exception.MathIllegalArgumentException; 020 import org.apache.commons.math3.exception.util.LocalizedFormats; 021 import org.apache.commons.math3.linear.RealMatrix; 022 import org.apache.commons.math3.linear.BlockRealMatrix; 023 import org.apache.commons.math3.stat.descriptive.moment.Mean; 024 import org.apache.commons.math3.stat.descriptive.moment.Variance; 025 026 /** 027 * Computes covariances for pairs of arrays or columns of a matrix. 028 * 029 * <p>The constructors that take <code>RealMatrix</code> or 030 * <code>double[][]</code> arguments generate covariance matrices. The 031 * columns of the input matrices are assumed to represent variable values.</p> 032 * 033 * <p>The constructor argument <code>biasCorrected</code> determines whether or 034 * not computed covariances are bias-corrected.</p> 035 * 036 * <p>Unbiased covariances are given by the formula</p> 037 * <code>cov(X, Y) = Σ[(x<sub>i</sub> - E(X))(y<sub>i</sub> - E(Y))] / (n - 1)</code> 038 * where <code>E(X)</code> is the mean of <code>X</code> and <code>E(Y)</code> 039 * is the mean of the <code>Y</code> values. 040 * 041 * <p>Non-bias-corrected estimates use <code>n</code> in place of <code>n - 1</code> 042 * 043 * @version $Id: Covariance.java 1416643 2012-12-03 19:37:14Z tn $ 044 * @since 2.0 045 */ 046 public class Covariance { 047 048 /** covariance matrix */ 049 private final RealMatrix covarianceMatrix; 050 051 /** 052 * Create an empty covariance matrix. 053 */ 054 /** Number of observations (length of covariate vectors) */ 055 private final int n; 056 057 /** 058 * Create a Covariance with no data 059 */ 060 public Covariance() { 061 super(); 062 covarianceMatrix = null; 063 n = 0; 064 } 065 066 /** 067 * Create a Covariance matrix from a rectangular array 068 * whose columns represent covariates. 069 * 070 * <p>The <code>biasCorrected</code> parameter determines whether or not 071 * covariance estimates are bias-corrected.</p> 072 * 073 * <p>The input array must be rectangular with at least two columns 074 * and two rows.</p> 075 * 076 * @param data rectangular array with columns representing covariates 077 * @param biasCorrected true means covariances are bias-corrected 078 * @throws MathIllegalArgumentException if the input data array is not 079 * rectangular with at least two rows and two columns. 080 */ 081 public Covariance(double[][] data, boolean biasCorrected) 082 throws MathIllegalArgumentException { 083 this(new BlockRealMatrix(data), biasCorrected); 084 } 085 086 /** 087 * Create a Covariance matrix from a rectangular array 088 * whose columns represent covariates. 089 * 090 * <p>The input array must be rectangular with at least two columns 091 * and two rows</p> 092 * 093 * @param data rectangular array with columns representing covariates 094 * @throws MathIllegalArgumentException if the input data array is not 095 * rectangular with at least two rows and two columns. 096 */ 097 public Covariance(double[][] data) throws MathIllegalArgumentException { 098 this(data, true); 099 } 100 101 /** 102 * Create a covariance matrix from a matrix whose columns 103 * represent covariates. 104 * 105 * <p>The <code>biasCorrected</code> parameter determines whether or not 106 * covariance estimates are bias-corrected.</p> 107 * 108 * <p>The matrix must have at least two columns and two rows</p> 109 * 110 * @param matrix matrix with columns representing covariates 111 * @param biasCorrected true means covariances are bias-corrected 112 * @throws MathIllegalArgumentException if the input matrix does not have 113 * at least two rows and two columns 114 */ 115 public Covariance(RealMatrix matrix, boolean biasCorrected) 116 throws MathIllegalArgumentException { 117 checkSufficientData(matrix); 118 n = matrix.getRowDimension(); 119 covarianceMatrix = computeCovarianceMatrix(matrix, biasCorrected); 120 } 121 122 /** 123 * Create a covariance matrix from a matrix whose columns 124 * represent covariates. 125 * 126 * <p>The matrix must have at least two columns and two rows</p> 127 * 128 * @param matrix matrix with columns representing covariates 129 * @throws MathIllegalArgumentException if the input matrix does not have 130 * at least two rows and two columns 131 */ 132 public Covariance(RealMatrix matrix) throws MathIllegalArgumentException { 133 this(matrix, true); 134 } 135 136 /** 137 * Returns the covariance matrix 138 * 139 * @return covariance matrix 140 */ 141 public RealMatrix getCovarianceMatrix() { 142 return covarianceMatrix; 143 } 144 145 /** 146 * Returns the number of observations (length of covariate vectors) 147 * 148 * @return number of observations 149 */ 150 public int getN() { 151 return n; 152 } 153 154 /** 155 * Compute a covariance matrix from a matrix whose columns represent 156 * covariates. 157 * @param matrix input matrix (must have at least two columns and two rows) 158 * @param biasCorrected determines whether or not covariance estimates are bias-corrected 159 * @return covariance matrix 160 * @throws MathIllegalArgumentException if the matrix does not contain sufficient data 161 */ 162 protected RealMatrix computeCovarianceMatrix(RealMatrix matrix, boolean biasCorrected) 163 throws MathIllegalArgumentException { 164 int dimension = matrix.getColumnDimension(); 165 Variance variance = new Variance(biasCorrected); 166 RealMatrix outMatrix = new BlockRealMatrix(dimension, dimension); 167 for (int i = 0; i < dimension; i++) { 168 for (int j = 0; j < i; j++) { 169 double cov = covariance(matrix.getColumn(i), matrix.getColumn(j), biasCorrected); 170 outMatrix.setEntry(i, j, cov); 171 outMatrix.setEntry(j, i, cov); 172 } 173 outMatrix.setEntry(i, i, variance.evaluate(matrix.getColumn(i))); 174 } 175 return outMatrix; 176 } 177 178 /** 179 * Create a covariance matrix from a matrix whose columns represent 180 * covariates. Covariances are computed using the bias-corrected formula. 181 * @param matrix input matrix (must have at least two columns and two rows) 182 * @return covariance matrix 183 * @throws MathIllegalArgumentException if matrix does not contain sufficient data 184 * @see #Covariance 185 */ 186 protected RealMatrix computeCovarianceMatrix(RealMatrix matrix) 187 throws MathIllegalArgumentException { 188 return computeCovarianceMatrix(matrix, true); 189 } 190 191 /** 192 * Compute a covariance matrix from a rectangular array whose columns represent 193 * covariates. 194 * @param data input array (must have at least two columns and two rows) 195 * @param biasCorrected determines whether or not covariance estimates are bias-corrected 196 * @return covariance matrix 197 * @throws MathIllegalArgumentException if the data array does not contain sufficient 198 * data 199 */ 200 protected RealMatrix computeCovarianceMatrix(double[][] data, boolean biasCorrected) 201 throws MathIllegalArgumentException { 202 return computeCovarianceMatrix(new BlockRealMatrix(data), biasCorrected); 203 } 204 205 /** 206 * Create a covariance matrix from a rectangular array whose columns represent 207 * covariates. Covariances are computed using the bias-corrected formula. 208 * @param data input array (must have at least two columns and two rows) 209 * @return covariance matrix 210 * @throws MathIllegalArgumentException if the data array does not contain sufficient data 211 * @see #Covariance 212 */ 213 protected RealMatrix computeCovarianceMatrix(double[][] data) throws MathIllegalArgumentException { 214 return computeCovarianceMatrix(data, true); 215 } 216 217 /** 218 * Computes the covariance between the two arrays. 219 * 220 * <p>Array lengths must match and the common length must be at least 2.</p> 221 * 222 * @param xArray first data array 223 * @param yArray second data array 224 * @param biasCorrected if true, returned value will be bias-corrected 225 * @return returns the covariance for the two arrays 226 * @throws MathIllegalArgumentException if the arrays lengths do not match or 227 * there is insufficient data 228 */ 229 public double covariance(final double[] xArray, final double[] yArray, boolean biasCorrected) 230 throws MathIllegalArgumentException { 231 Mean mean = new Mean(); 232 double result = 0d; 233 int length = xArray.length; 234 if (length != yArray.length) { 235 throw new MathIllegalArgumentException( 236 LocalizedFormats.DIMENSIONS_MISMATCH_SIMPLE, length, yArray.length); 237 } else if (length < 2) { 238 throw new MathIllegalArgumentException( 239 LocalizedFormats.INSUFFICIENT_OBSERVED_POINTS_IN_SAMPLE, length, 2); 240 } else { 241 double xMean = mean.evaluate(xArray); 242 double yMean = mean.evaluate(yArray); 243 for (int i = 0; i < length; i++) { 244 double xDev = xArray[i] - xMean; 245 double yDev = yArray[i] - yMean; 246 result += (xDev * yDev - result) / (i + 1); 247 } 248 } 249 return biasCorrected ? result * ((double) length / (double)(length - 1)) : result; 250 } 251 252 /** 253 * Computes the covariance between the two arrays, using the bias-corrected 254 * formula. 255 * 256 * <p>Array lengths must match and the common length must be at least 2.</p> 257 * 258 * @param xArray first data array 259 * @param yArray second data array 260 * @return returns the covariance for the two arrays 261 * @throws MathIllegalArgumentException if the arrays lengths do not match or 262 * there is insufficient data 263 */ 264 public double covariance(final double[] xArray, final double[] yArray) 265 throws MathIllegalArgumentException { 266 return covariance(xArray, yArray, true); 267 } 268 269 /** 270 * Throws MathIllegalArgumentException if the matrix does not have at least 271 * two columns and two rows. 272 * @param matrix matrix to check 273 * @throws MathIllegalArgumentException if the matrix does not contain sufficient data 274 * to compute covariance 275 */ 276 private void checkSufficientData(final RealMatrix matrix) throws MathIllegalArgumentException { 277 int nRows = matrix.getRowDimension(); 278 int nCols = matrix.getColumnDimension(); 279 if (nRows < 2 || nCols < 2) { 280 throw new MathIllegalArgumentException( 281 LocalizedFormats.INSUFFICIENT_ROWS_AND_COLUMNS, 282 nRows, nCols); 283 } 284 } 285 }