001 /* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 package org.apache.commons.math3.linear; 018 019 import org.apache.commons.math3.exception.NumberIsTooLargeException; 020 import org.apache.commons.math3.exception.util.LocalizedFormats; 021 import org.apache.commons.math3.util.FastMath; 022 import org.apache.commons.math3.util.Precision; 023 024 /** 025 * Calculates the compact Singular Value Decomposition of a matrix. 026 * <p> 027 * The Singular Value Decomposition of matrix A is a set of three matrices: U, 028 * Σ and V such that A = U × Σ × V<sup>T</sup>. Let A be 029 * a m × n matrix, then U is a m × p orthogonal matrix, Σ is a 030 * p × p diagonal matrix with positive or null elements, V is a p × 031 * n orthogonal matrix (hence V<sup>T</sup> is also orthogonal) where 032 * p=min(m,n). 033 * </p> 034 * <p>This class is similar to the class with similar name from the 035 * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> library, with the 036 * following changes:</p> 037 * <ul> 038 * <li>the {@code norm2} method which has been renamed as {@link #getNorm() 039 * getNorm},</li> 040 * <li>the {@code cond} method which has been renamed as {@link 041 * #getConditionNumber() getConditionNumber},</li> 042 * <li>the {@code rank} method which has been renamed as {@link #getRank() 043 * getRank},</li> 044 * <li>a {@link #getUT() getUT} method has been added,</li> 045 * <li>a {@link #getVT() getVT} method has been added,</li> 046 * <li>a {@link #getSolver() getSolver} method has been added,</li> 047 * <li>a {@link #getCovariance(double) getCovariance} method has been added.</li> 048 * </ul> 049 * @see <a href="http://mathworld.wolfram.com/SingularValueDecomposition.html">MathWorld</a> 050 * @see <a href="http://en.wikipedia.org/wiki/Singular_value_decomposition">Wikipedia</a> 051 * @version $Id: SingularValueDecomposition.java 1456931 2013-03-15 12:34:35Z luc $ 052 * @since 2.0 (changed to concrete class in 3.0) 053 */ 054 public class SingularValueDecomposition { 055 /** Relative threshold for small singular values. */ 056 private static final double EPS = 0x1.0p-52; 057 /** Absolute threshold for small singular values. */ 058 private static final double TINY = 0x1.0p-966; 059 /** Computed singular values. */ 060 private final double[] singularValues; 061 /** max(row dimension, column dimension). */ 062 private final int m; 063 /** min(row dimension, column dimension). */ 064 private final int n; 065 /** Indicator for transposed matrix. */ 066 private final boolean transposed; 067 /** Cached value of U matrix. */ 068 private final RealMatrix cachedU; 069 /** Cached value of transposed U matrix. */ 070 private RealMatrix cachedUt; 071 /** Cached value of S (diagonal) matrix. */ 072 private RealMatrix cachedS; 073 /** Cached value of V matrix. */ 074 private final RealMatrix cachedV; 075 /** Cached value of transposed V matrix. */ 076 private RealMatrix cachedVt; 077 /** 078 * Tolerance value for small singular values, calculated once we have 079 * populated "singularValues". 080 **/ 081 private final double tol; 082 083 /** 084 * Calculates the compact Singular Value Decomposition of the given matrix. 085 * 086 * @param matrix Matrix to decompose. 087 */ 088 public SingularValueDecomposition(final RealMatrix matrix) { 089 final double[][] A; 090 091 // "m" is always the largest dimension. 092 if (matrix.getRowDimension() < matrix.getColumnDimension()) { 093 transposed = true; 094 A = matrix.transpose().getData(); 095 m = matrix.getColumnDimension(); 096 n = matrix.getRowDimension(); 097 } else { 098 transposed = false; 099 A = matrix.getData(); 100 m = matrix.getRowDimension(); 101 n = matrix.getColumnDimension(); 102 } 103 104 singularValues = new double[n]; 105 final double[][] U = new double[m][n]; 106 final double[][] V = new double[n][n]; 107 final double[] e = new double[n]; 108 final double[] work = new double[m]; 109 // Reduce A to bidiagonal form, storing the diagonal elements 110 // in s and the super-diagonal elements in e. 111 final int nct = FastMath.min(m - 1, n); 112 final int nrt = FastMath.max(0, n - 2); 113 for (int k = 0; k < FastMath.max(nct, nrt); k++) { 114 if (k < nct) { 115 // Compute the transformation for the k-th column and 116 // place the k-th diagonal in s[k]. 117 // Compute 2-norm of k-th column without under/overflow. 118 singularValues[k] = 0; 119 for (int i = k; i < m; i++) { 120 singularValues[k] = FastMath.hypot(singularValues[k], A[i][k]); 121 } 122 if (singularValues[k] != 0) { 123 if (A[k][k] < 0) { 124 singularValues[k] = -singularValues[k]; 125 } 126 for (int i = k; i < m; i++) { 127 A[i][k] /= singularValues[k]; 128 } 129 A[k][k] += 1; 130 } 131 singularValues[k] = -singularValues[k]; 132 } 133 for (int j = k + 1; j < n; j++) { 134 if (k < nct && 135 singularValues[k] != 0) { 136 // Apply the transformation. 137 double t = 0; 138 for (int i = k; i < m; i++) { 139 t += A[i][k] * A[i][j]; 140 } 141 t = -t / A[k][k]; 142 for (int i = k; i < m; i++) { 143 A[i][j] += t * A[i][k]; 144 } 145 } 146 // Place the k-th row of A into e for the 147 // subsequent calculation of the row transformation. 148 e[j] = A[k][j]; 149 } 150 if (k < nct) { 151 // Place the transformation in U for subsequent back 152 // multiplication. 153 for (int i = k; i < m; i++) { 154 U[i][k] = A[i][k]; 155 } 156 } 157 if (k < nrt) { 158 // Compute the k-th row transformation and place the 159 // k-th super-diagonal in e[k]. 160 // Compute 2-norm without under/overflow. 161 e[k] = 0; 162 for (int i = k + 1; i < n; i++) { 163 e[k] = FastMath.hypot(e[k], e[i]); 164 } 165 if (e[k] != 0) { 166 if (e[k + 1] < 0) { 167 e[k] = -e[k]; 168 } 169 for (int i = k + 1; i < n; i++) { 170 e[i] /= e[k]; 171 } 172 e[k + 1] += 1; 173 } 174 e[k] = -e[k]; 175 if (k + 1 < m && 176 e[k] != 0) { 177 // Apply the transformation. 178 for (int i = k + 1; i < m; i++) { 179 work[i] = 0; 180 } 181 for (int j = k + 1; j < n; j++) { 182 for (int i = k + 1; i < m; i++) { 183 work[i] += e[j] * A[i][j]; 184 } 185 } 186 for (int j = k + 1; j < n; j++) { 187 final double t = -e[j] / e[k + 1]; 188 for (int i = k + 1; i < m; i++) { 189 A[i][j] += t * work[i]; 190 } 191 } 192 } 193 194 // Place the transformation in V for subsequent 195 // back multiplication. 196 for (int i = k + 1; i < n; i++) { 197 V[i][k] = e[i]; 198 } 199 } 200 } 201 // Set up the final bidiagonal matrix or order p. 202 int p = n; 203 if (nct < n) { 204 singularValues[nct] = A[nct][nct]; 205 } 206 if (m < p) { 207 singularValues[p - 1] = 0; 208 } 209 if (nrt + 1 < p) { 210 e[nrt] = A[nrt][p - 1]; 211 } 212 e[p - 1] = 0; 213 214 // Generate U. 215 for (int j = nct; j < n; j++) { 216 for (int i = 0; i < m; i++) { 217 U[i][j] = 0; 218 } 219 U[j][j] = 1; 220 } 221 for (int k = nct - 1; k >= 0; k--) { 222 if (singularValues[k] != 0) { 223 for (int j = k + 1; j < n; j++) { 224 double t = 0; 225 for (int i = k; i < m; i++) { 226 t += U[i][k] * U[i][j]; 227 } 228 t = -t / U[k][k]; 229 for (int i = k; i < m; i++) { 230 U[i][j] += t * U[i][k]; 231 } 232 } 233 for (int i = k; i < m; i++) { 234 U[i][k] = -U[i][k]; 235 } 236 U[k][k] = 1 + U[k][k]; 237 for (int i = 0; i < k - 1; i++) { 238 U[i][k] = 0; 239 } 240 } else { 241 for (int i = 0; i < m; i++) { 242 U[i][k] = 0; 243 } 244 U[k][k] = 1; 245 } 246 } 247 248 // Generate V. 249 for (int k = n - 1; k >= 0; k--) { 250 if (k < nrt && 251 e[k] != 0) { 252 for (int j = k + 1; j < n; j++) { 253 double t = 0; 254 for (int i = k + 1; i < n; i++) { 255 t += V[i][k] * V[i][j]; 256 } 257 t = -t / V[k + 1][k]; 258 for (int i = k + 1; i < n; i++) { 259 V[i][j] += t * V[i][k]; 260 } 261 } 262 } 263 for (int i = 0; i < n; i++) { 264 V[i][k] = 0; 265 } 266 V[k][k] = 1; 267 } 268 269 // Main iteration loop for the singular values. 270 final int pp = p - 1; 271 int iter = 0; 272 while (p > 0) { 273 int k; 274 int kase; 275 // Here is where a test for too many iterations would go. 276 // This section of the program inspects for 277 // negligible elements in the s and e arrays. On 278 // completion the variables kase and k are set as follows. 279 // kase = 1 if s(p) and e[k-1] are negligible and k<p 280 // kase = 2 if s(k) is negligible and k<p 281 // kase = 3 if e[k-1] is negligible, k<p, and 282 // s(k), ..., s(p) are not negligible (qr step). 283 // kase = 4 if e(p-1) is negligible (convergence). 284 for (k = p - 2; k >= 0; k--) { 285 final double threshold 286 = TINY + EPS * (FastMath.abs(singularValues[k]) + 287 FastMath.abs(singularValues[k + 1])); 288 289 // the following condition is written this way in order 290 // to break out of the loop when NaN occurs, writing it 291 // as "if (FastMath.abs(e[k]) <= threshold)" would loop 292 // indefinitely in case of NaNs because comparison on NaNs 293 // always return false, regardless of what is checked 294 // see issue MATH-947 295 if (!(FastMath.abs(e[k]) > threshold)) { 296 e[k] = 0; 297 break; 298 } 299 300 } 301 302 if (k == p - 2) { 303 kase = 4; 304 } else { 305 int ks; 306 for (ks = p - 1; ks >= k; ks--) { 307 if (ks == k) { 308 break; 309 } 310 final double t = (ks != p ? FastMath.abs(e[ks]) : 0) + 311 (ks != k + 1 ? FastMath.abs(e[ks - 1]) : 0); 312 if (FastMath.abs(singularValues[ks]) <= TINY + EPS * t) { 313 singularValues[ks] = 0; 314 break; 315 } 316 } 317 if (ks == k) { 318 kase = 3; 319 } else if (ks == p - 1) { 320 kase = 1; 321 } else { 322 kase = 2; 323 k = ks; 324 } 325 } 326 k++; 327 // Perform the task indicated by kase. 328 switch (kase) { 329 // Deflate negligible s(p). 330 case 1: { 331 double f = e[p - 2]; 332 e[p - 2] = 0; 333 for (int j = p - 2; j >= k; j--) { 334 double t = FastMath.hypot(singularValues[j], f); 335 final double cs = singularValues[j] / t; 336 final double sn = f / t; 337 singularValues[j] = t; 338 if (j != k) { 339 f = -sn * e[j - 1]; 340 e[j - 1] = cs * e[j - 1]; 341 } 342 343 for (int i = 0; i < n; i++) { 344 t = cs * V[i][j] + sn * V[i][p - 1]; 345 V[i][p - 1] = -sn * V[i][j] + cs * V[i][p - 1]; 346 V[i][j] = t; 347 } 348 } 349 } 350 break; 351 // Split at negligible s(k). 352 case 2: { 353 double f = e[k - 1]; 354 e[k - 1] = 0; 355 for (int j = k; j < p; j++) { 356 double t = FastMath.hypot(singularValues[j], f); 357 final double cs = singularValues[j] / t; 358 final double sn = f / t; 359 singularValues[j] = t; 360 f = -sn * e[j]; 361 e[j] = cs * e[j]; 362 363 for (int i = 0; i < m; i++) { 364 t = cs * U[i][j] + sn * U[i][k - 1]; 365 U[i][k - 1] = -sn * U[i][j] + cs * U[i][k - 1]; 366 U[i][j] = t; 367 } 368 } 369 } 370 break; 371 // Perform one qr step. 372 case 3: { 373 // Calculate the shift. 374 final double maxPm1Pm2 = FastMath.max(FastMath.abs(singularValues[p - 1]), 375 FastMath.abs(singularValues[p - 2])); 376 final double scale = FastMath.max(FastMath.max(FastMath.max(maxPm1Pm2, 377 FastMath.abs(e[p - 2])), 378 FastMath.abs(singularValues[k])), 379 FastMath.abs(e[k])); 380 final double sp = singularValues[p - 1] / scale; 381 final double spm1 = singularValues[p - 2] / scale; 382 final double epm1 = e[p - 2] / scale; 383 final double sk = singularValues[k] / scale; 384 final double ek = e[k] / scale; 385 final double b = ((spm1 + sp) * (spm1 - sp) + epm1 * epm1) / 2.0; 386 final double c = (sp * epm1) * (sp * epm1); 387 double shift = 0; 388 if (b != 0 || 389 c != 0) { 390 shift = FastMath.sqrt(b * b + c); 391 if (b < 0) { 392 shift = -shift; 393 } 394 shift = c / (b + shift); 395 } 396 double f = (sk + sp) * (sk - sp) + shift; 397 double g = sk * ek; 398 // Chase zeros. 399 for (int j = k; j < p - 1; j++) { 400 double t = FastMath.hypot(f, g); 401 double cs = f / t; 402 double sn = g / t; 403 if (j != k) { 404 e[j - 1] = t; 405 } 406 f = cs * singularValues[j] + sn * e[j]; 407 e[j] = cs * e[j] - sn * singularValues[j]; 408 g = sn * singularValues[j + 1]; 409 singularValues[j + 1] = cs * singularValues[j + 1]; 410 411 for (int i = 0; i < n; i++) { 412 t = cs * V[i][j] + sn * V[i][j + 1]; 413 V[i][j + 1] = -sn * V[i][j] + cs * V[i][j + 1]; 414 V[i][j] = t; 415 } 416 t = FastMath.hypot(f, g); 417 cs = f / t; 418 sn = g / t; 419 singularValues[j] = t; 420 f = cs * e[j] + sn * singularValues[j + 1]; 421 singularValues[j + 1] = -sn * e[j] + cs * singularValues[j + 1]; 422 g = sn * e[j + 1]; 423 e[j + 1] = cs * e[j + 1]; 424 if (j < m - 1) { 425 for (int i = 0; i < m; i++) { 426 t = cs * U[i][j] + sn * U[i][j + 1]; 427 U[i][j + 1] = -sn * U[i][j] + cs * U[i][j + 1]; 428 U[i][j] = t; 429 } 430 } 431 } 432 e[p - 2] = f; 433 iter = iter + 1; 434 } 435 break; 436 // Convergence. 437 default: { 438 // Make the singular values positive. 439 if (singularValues[k] <= 0) { 440 singularValues[k] = singularValues[k] < 0 ? -singularValues[k] : 0; 441 442 for (int i = 0; i <= pp; i++) { 443 V[i][k] = -V[i][k]; 444 } 445 } 446 // Order the singular values. 447 while (k < pp) { 448 if (singularValues[k] >= singularValues[k + 1]) { 449 break; 450 } 451 double t = singularValues[k]; 452 singularValues[k] = singularValues[k + 1]; 453 singularValues[k + 1] = t; 454 if (k < n - 1) { 455 for (int i = 0; i < n; i++) { 456 t = V[i][k + 1]; 457 V[i][k + 1] = V[i][k]; 458 V[i][k] = t; 459 } 460 } 461 if (k < m - 1) { 462 for (int i = 0; i < m; i++) { 463 t = U[i][k + 1]; 464 U[i][k + 1] = U[i][k]; 465 U[i][k] = t; 466 } 467 } 468 k++; 469 } 470 iter = 0; 471 p--; 472 } 473 break; 474 } 475 } 476 477 // Set the small value tolerance used to calculate rank and pseudo-inverse 478 tol = FastMath.max(m * singularValues[0] * EPS, 479 FastMath.sqrt(Precision.SAFE_MIN)); 480 481 if (!transposed) { 482 cachedU = MatrixUtils.createRealMatrix(U); 483 cachedV = MatrixUtils.createRealMatrix(V); 484 } else { 485 cachedU = MatrixUtils.createRealMatrix(V); 486 cachedV = MatrixUtils.createRealMatrix(U); 487 } 488 } 489 490 /** 491 * Returns the matrix U of the decomposition. 492 * <p>U is an orthogonal matrix, i.e. its transpose is also its inverse.</p> 493 * @return the U matrix 494 * @see #getUT() 495 */ 496 public RealMatrix getU() { 497 // return the cached matrix 498 return cachedU; 499 500 } 501 502 /** 503 * Returns the transpose of the matrix U of the decomposition. 504 * <p>U is an orthogonal matrix, i.e. its transpose is also its inverse.</p> 505 * @return the U matrix (or null if decomposed matrix is singular) 506 * @see #getU() 507 */ 508 public RealMatrix getUT() { 509 if (cachedUt == null) { 510 cachedUt = getU().transpose(); 511 } 512 // return the cached matrix 513 return cachedUt; 514 } 515 516 /** 517 * Returns the diagonal matrix Σ of the decomposition. 518 * <p>Σ is a diagonal matrix. The singular values are provided in 519 * non-increasing order, for compatibility with Jama.</p> 520 * @return the Σ matrix 521 */ 522 public RealMatrix getS() { 523 if (cachedS == null) { 524 // cache the matrix for subsequent calls 525 cachedS = MatrixUtils.createRealDiagonalMatrix(singularValues); 526 } 527 return cachedS; 528 } 529 530 /** 531 * Returns the diagonal elements of the matrix Σ of the decomposition. 532 * <p>The singular values are provided in non-increasing order, for 533 * compatibility with Jama.</p> 534 * @return the diagonal elements of the Σ matrix 535 */ 536 public double[] getSingularValues() { 537 return singularValues.clone(); 538 } 539 540 /** 541 * Returns the matrix V of the decomposition. 542 * <p>V is an orthogonal matrix, i.e. its transpose is also its inverse.</p> 543 * @return the V matrix (or null if decomposed matrix is singular) 544 * @see #getVT() 545 */ 546 public RealMatrix getV() { 547 // return the cached matrix 548 return cachedV; 549 } 550 551 /** 552 * Returns the transpose of the matrix V of the decomposition. 553 * <p>V is an orthogonal matrix, i.e. its transpose is also its inverse.</p> 554 * @return the V matrix (or null if decomposed matrix is singular) 555 * @see #getV() 556 */ 557 public RealMatrix getVT() { 558 if (cachedVt == null) { 559 cachedVt = getV().transpose(); 560 } 561 // return the cached matrix 562 return cachedVt; 563 } 564 565 /** 566 * Returns the n × n covariance matrix. 567 * <p>The covariance matrix is V × J × V<sup>T</sup> 568 * where J is the diagonal matrix of the inverse of the squares of 569 * the singular values.</p> 570 * @param minSingularValue value below which singular values are ignored 571 * (a 0 or negative value implies all singular value will be used) 572 * @return covariance matrix 573 * @exception IllegalArgumentException if minSingularValue is larger than 574 * the largest singular value, meaning all singular values are ignored 575 */ 576 public RealMatrix getCovariance(final double minSingularValue) { 577 // get the number of singular values to consider 578 final int p = singularValues.length; 579 int dimension = 0; 580 while (dimension < p && 581 singularValues[dimension] >= minSingularValue) { 582 ++dimension; 583 } 584 585 if (dimension == 0) { 586 throw new NumberIsTooLargeException(LocalizedFormats.TOO_LARGE_CUTOFF_SINGULAR_VALUE, 587 minSingularValue, singularValues[0], true); 588 } 589 590 final double[][] data = new double[dimension][p]; 591 getVT().walkInOptimizedOrder(new DefaultRealMatrixPreservingVisitor() { 592 /** {@inheritDoc} */ 593 @Override 594 public void visit(final int row, final int column, 595 final double value) { 596 data[row][column] = value / singularValues[row]; 597 } 598 }, 0, dimension - 1, 0, p - 1); 599 600 RealMatrix jv = new Array2DRowRealMatrix(data, false); 601 return jv.transpose().multiply(jv); 602 } 603 604 /** 605 * Returns the L<sub>2</sub> norm of the matrix. 606 * <p>The L<sub>2</sub> norm is max(|A × u|<sub>2</sub> / 607 * |u|<sub>2</sub>), where |.|<sub>2</sub> denotes the vectorial 2-norm 608 * (i.e. the traditional euclidian norm).</p> 609 * @return norm 610 */ 611 public double getNorm() { 612 return singularValues[0]; 613 } 614 615 /** 616 * Return the condition number of the matrix. 617 * @return condition number of the matrix 618 */ 619 public double getConditionNumber() { 620 return singularValues[0] / singularValues[n - 1]; 621 } 622 623 /** 624 * Computes the inverse of the condition number. 625 * In cases of rank deficiency, the {@link #getConditionNumber() condition 626 * number} will become undefined. 627 * 628 * @return the inverse of the condition number. 629 */ 630 public double getInverseConditionNumber() { 631 return singularValues[n - 1] / singularValues[0]; 632 } 633 634 /** 635 * Return the effective numerical matrix rank. 636 * <p>The effective numerical rank is the number of non-negligible 637 * singular values. The threshold used to identify non-negligible 638 * terms is max(m,n) × ulp(s<sub>1</sub>) where ulp(s<sub>1</sub>) 639 * is the least significant bit of the largest singular value.</p> 640 * @return effective numerical matrix rank 641 */ 642 public int getRank() { 643 int r = 0; 644 for (int i = 0; i < singularValues.length; i++) { 645 if (singularValues[i] > tol) { 646 r++; 647 } 648 } 649 return r; 650 } 651 652 /** 653 * Get a solver for finding the A × X = B solution in least square sense. 654 * @return a solver 655 */ 656 public DecompositionSolver getSolver() { 657 return new Solver(singularValues, getUT(), getV(), getRank() == m, tol); 658 } 659 660 /** Specialized solver. */ 661 private static class Solver implements DecompositionSolver { 662 /** Pseudo-inverse of the initial matrix. */ 663 private final RealMatrix pseudoInverse; 664 /** Singularity indicator. */ 665 private boolean nonSingular; 666 667 /** 668 * Build a solver from decomposed matrix. 669 * 670 * @param singularValues Singular values. 671 * @param uT U<sup>T</sup> matrix of the decomposition. 672 * @param v V matrix of the decomposition. 673 * @param nonSingular Singularity indicator. 674 * @param tol tolerance for singular values 675 */ 676 private Solver(final double[] singularValues, final RealMatrix uT, 677 final RealMatrix v, final boolean nonSingular, final double tol) { 678 final double[][] suT = uT.getData(); 679 for (int i = 0; i < singularValues.length; ++i) { 680 final double a; 681 if (singularValues[i] > tol) { 682 a = 1 / singularValues[i]; 683 } else { 684 a = 0; 685 } 686 final double[] suTi = suT[i]; 687 for (int j = 0; j < suTi.length; ++j) { 688 suTi[j] *= a; 689 } 690 } 691 pseudoInverse = v.multiply(new Array2DRowRealMatrix(suT, false)); 692 this.nonSingular = nonSingular; 693 } 694 695 /** 696 * Solve the linear equation A × X = B in least square sense. 697 * <p> 698 * The m×n matrix A may not be square, the solution X is such that 699 * ||A × X - B|| is minimal. 700 * </p> 701 * @param b Right-hand side of the equation A × X = B 702 * @return a vector X that minimizes the two norm of A × X - B 703 * @throws org.apache.commons.math3.exception.DimensionMismatchException 704 * if the matrices dimensions do not match. 705 */ 706 public RealVector solve(final RealVector b) { 707 return pseudoInverse.operate(b); 708 } 709 710 /** 711 * Solve the linear equation A × X = B in least square sense. 712 * <p> 713 * The m×n matrix A may not be square, the solution X is such that 714 * ||A × X - B|| is minimal. 715 * </p> 716 * 717 * @param b Right-hand side of the equation A × X = B 718 * @return a matrix X that minimizes the two norm of A × X - B 719 * @throws org.apache.commons.math3.exception.DimensionMismatchException 720 * if the matrices dimensions do not match. 721 */ 722 public RealMatrix solve(final RealMatrix b) { 723 return pseudoInverse.multiply(b); 724 } 725 726 /** 727 * Check if the decomposed matrix is non-singular. 728 * 729 * @return {@code true} if the decomposed matrix is non-singular. 730 */ 731 public boolean isNonSingular() { 732 return nonSingular; 733 } 734 735 /** 736 * Get the pseudo-inverse of the decomposed matrix. 737 * 738 * @return the inverse matrix. 739 */ 740 public RealMatrix getInverse() { 741 return pseudoInverse; 742 } 743 } 744 }