001 /* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 package org.apache.commons.math3.random; 018 019 import org.apache.commons.math3.exception.NullArgumentException; 020 import org.apache.commons.math3.exception.OutOfRangeException; 021 import org.apache.commons.math3.exception.util.LocalizedFormats; 022 import org.apache.commons.math3.util.FastMath; 023 024 /** 025 * <p>This class provides a stable normalized random generator. It samples from a stable 026 * distribution with location parameter 0 and scale 1.</p> 027 * 028 * <p>The implementation uses the Chambers-Mallows-Stuck method as described in 029 * <i>Handbook of computational statistics: concepts and methods</i> by 030 * James E. Gentle, Wolfgang Härdle, Yuichi Mori.</p> 031 * 032 * @version $Id: StableRandomGenerator.java 1394763 2012-10-05 19:54:00Z psteitz $ 033 * @since 3.0 034 */ 035 public class StableRandomGenerator implements NormalizedRandomGenerator { 036 /** Underlying generator. */ 037 private final RandomGenerator generator; 038 039 /** stability parameter */ 040 private final double alpha; 041 042 /** skewness parameter */ 043 private final double beta; 044 045 /** cache of expression value used in generation */ 046 private final double zeta; 047 048 /** 049 * Create a new generator. 050 * 051 * @param generator underlying random generator to use 052 * @param alpha Stability parameter. Must be in range (0, 2] 053 * @param beta Skewness parameter. Must be in range [-1, 1] 054 * @throws NullArgumentException if generator is null 055 * @throws OutOfRangeException if {@code alpha <= 0} or {@code alpha > 2} 056 * or {@code beta < -1} or {@code beta > 1} 057 */ 058 public StableRandomGenerator(final RandomGenerator generator, 059 final double alpha, final double beta) 060 throws NullArgumentException, OutOfRangeException { 061 if (generator == null) { 062 throw new NullArgumentException(); 063 } 064 065 if (!(alpha > 0d && alpha <= 2d)) { 066 throw new OutOfRangeException(LocalizedFormats.OUT_OF_RANGE_LEFT, 067 alpha, 0, 2); 068 } 069 070 if (!(beta >= -1d && beta <= 1d)) { 071 throw new OutOfRangeException(LocalizedFormats.OUT_OF_RANGE_SIMPLE, 072 beta, -1, 1); 073 } 074 075 this.generator = generator; 076 this.alpha = alpha; 077 this.beta = beta; 078 if (alpha < 2d && beta != 0d) { 079 zeta = beta * FastMath.tan(FastMath.PI * alpha / 2); 080 } else { 081 zeta = 0d; 082 } 083 } 084 085 /** 086 * Generate a random scalar with zero location and unit scale. 087 * 088 * @return a random scalar with zero location and unit scale 089 */ 090 public double nextNormalizedDouble() { 091 // we need 2 uniform random numbers to calculate omega and phi 092 double omega = -FastMath.log(generator.nextDouble()); 093 double phi = FastMath.PI * (generator.nextDouble() - 0.5); 094 095 // Normal distribution case (Box-Muller algorithm) 096 if (alpha == 2d) { 097 return FastMath.sqrt(2d * omega) * FastMath.sin(phi); 098 } 099 100 double x; 101 // when beta = 0, zeta is zero as well 102 // Thus we can exclude it from the formula 103 if (beta == 0d) { 104 // Cauchy distribution case 105 if (alpha == 1d) { 106 x = FastMath.tan(phi); 107 } else { 108 x = FastMath.pow(omega * FastMath.cos((1 - alpha) * phi), 109 1d / alpha - 1d) * 110 FastMath.sin(alpha * phi) / 111 FastMath.pow(FastMath.cos(phi), 1d / alpha); 112 } 113 } else { 114 // Generic stable distribution 115 double cosPhi = FastMath.cos(phi); 116 // to avoid rounding errors around alpha = 1 117 if (FastMath.abs(alpha - 1d) > 1e-8) { 118 double alphaPhi = alpha * phi; 119 double invAlphaPhi = phi - alphaPhi; 120 x = (FastMath.sin(alphaPhi) + zeta * FastMath.cos(alphaPhi)) / cosPhi * 121 (FastMath.cos(invAlphaPhi) + zeta * FastMath.sin(invAlphaPhi)) / 122 FastMath.pow(omega * cosPhi, (1 - alpha) / alpha); 123 } else { 124 double betaPhi = FastMath.PI / 2 + beta * phi; 125 x = 2d / FastMath.PI * (betaPhi * FastMath.tan(phi) - beta * 126 FastMath.log(FastMath.PI / 2d * omega * cosPhi / betaPhi)); 127 128 if (alpha != 1d) { 129 x = x + beta * FastMath.tan(FastMath.PI * alpha / 2); 130 } 131 } 132 } 133 return x; 134 } 135 }