org.apache.commons.math3.special

## Class Erf

• public class Erf
extends Object
This is a utility class that provides computation methods related to the error functions.
• ### Method Summary

Methods
Modifier and Type Method and Description
static double erf(double x)
Returns the error function.
static double erf(double x1, double x2)
Returns the difference between erf(x1) and erf(x2).
static double erfc(double x)
Returns the complementary error function.
static double erfcInv(double x)
Returns the inverse erfc.
static double erfInv(double x)
Returns the inverse erf.
• ### Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
• ### Method Detail

• #### erf

public static double erf(double x)
Returns the error function.

erf(x) = 2/√π 0x e-t2dt

This implementation computes erf(x) using the regularized gamma function, following Erf, equation (3)

The value returned is always between -1 and 1 (inclusive). If abs(x) > 40, then erf(x) is indistinguishable from either 1 or -1 as a double, so the appropriate extreme value is returned.

Parameters:
x - the value.
Returns:
the error function erf(x)
Throws:
MaxCountExceededException - if the algorithm fails to converge.
Gamma.regularizedGammaP(double, double, double, int)
• #### erfc

public static double erfc(double x)
Returns the complementary error function.

erfc(x) = 2/√π x e-t2dt
= 1 - erf(x)

This implementation computes erfc(x) using the regularized gamma function, following Erf, equation (3).

The value returned is always between 0 and 2 (inclusive). If abs(x) > 40, then erf(x) is indistinguishable from either 0 or 2 as a double, so the appropriate extreme value is returned.

Parameters:
x - the value
Returns:
the complementary error function erfc(x)
Throws:
MaxCountExceededException - if the algorithm fails to converge.
Since:
2.2
Gamma.regularizedGammaQ(double, double, double, int)
• #### erf

public static double erf(double x1,
double x2)
Returns the difference between erf(x1) and erf(x2). The implementation uses either erf(double) or erfc(double) depending on which provides the most precise result.
Parameters:
x1 - the first value
x2 - the second value
Returns:
erf(x2) - erf(x1)
• #### erfInv

public static double erfInv(double x)
Returns the inverse erf.

This implementation is described in the paper: Approximating the erfinv function by Mike Giles, Oxford-Man Institute of Quantitative Finance, which was published in GPU Computing Gems, volume 2, 2010. The source code is available here.

Parameters:
x - the value
Returns:
t such that x = erf(t)
Since:
3.2
• #### erfcInv

public static double erfcInv(double x)
Returns the inverse erfc.
Parameters:
x - the value
Returns:
t such that x = erfc(t)
Since:
3.2