001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017package org.apache.commons.math3.analysis.integration.gauss;
018
019import org.apache.commons.math3.exception.DimensionMismatchException;
020import org.apache.commons.math3.util.Pair;
021import org.apache.commons.math3.util.FastMath;
022
023/**
024 * Factory that creates a
025 * <a href="http://en.wikipedia.org/wiki/Gauss-Hermite_quadrature">
026 * Gauss-type quadrature rule using Hermite polynomials</a>
027 * of the first kind.
028 * Such a quadrature rule allows the calculation of improper integrals
029 * of a function
030 * <p>
031 *  \(f(x) e^{-x^2}\)
032 * </p><p>
033 * Recurrence relation and weights computation follow
034 * <a href="http://en.wikipedia.org/wiki/Abramowitz_and_Stegun">
035 * Abramowitz and Stegun, 1964</a>.
036 * </p><p>
037 * The coefficients of the standard Hermite polynomials grow very rapidly.
038 * In order to avoid overflows, each Hermite polynomial is normalized with
039 * respect to the underlying scalar product.
040 * The initial interval for the application of the bisection method is
041 * based on the roots of the previous Hermite polynomial (interlacing).
042 * Upper and lower bounds of these roots are provided by </p>
043 * <blockquote>
044 *  I. Krasikov,
045 *  <em>Nonnegative quadratic forms and bounds on orthogonal polynomials</em>,
046 *  Journal of Approximation theory <b>111</b>, 31-49
047 * </blockquote>
048 *
049 * @since 3.3
050 */
051public class HermiteRuleFactory extends BaseRuleFactory<Double> {
052    /** &pi;<sup>1/2</sup> */
053    private static final double SQRT_PI = 1.77245385090551602729;
054    /** &pi;<sup>-1/4</sup> */
055    private static final double H0 = 7.5112554446494248286e-1;
056    /** &pi;<sup>-1/4</sup> &radic;2 */
057    private static final double H1 = 1.0622519320271969145;
058
059    /** {@inheritDoc} */
060    @Override
061    protected Pair<Double[], Double[]> computeRule(int numberOfPoints)
062        throws DimensionMismatchException {
063
064        if (numberOfPoints == 1) {
065            // Break recursion.
066            return new Pair<Double[], Double[]>(new Double[] { 0d },
067                                                new Double[] { SQRT_PI });
068        }
069
070        // Get previous rule.
071        // If it has not been computed yet it will trigger a recursive call
072        // to this method.
073        final int lastNumPoints = numberOfPoints - 1;
074        final Double[] previousPoints = getRuleInternal(lastNumPoints).getFirst();
075
076        // Compute next rule.
077        final Double[] points = new Double[numberOfPoints];
078        final Double[] weights = new Double[numberOfPoints];
079
080        final double sqrtTwoTimesLastNumPoints = FastMath.sqrt(2 * lastNumPoints);
081        final double sqrtTwoTimesNumPoints = FastMath.sqrt(2 * numberOfPoints);
082
083        // Find i-th root of H[n+1] by bracketing.
084        final int iMax = numberOfPoints / 2;
085        for (int i = 0; i < iMax; i++) {
086            // Lower-bound of the interval.
087            double a = (i == 0) ? -sqrtTwoTimesLastNumPoints : previousPoints[i - 1].doubleValue();
088            // Upper-bound of the interval.
089            double b = (iMax == 1) ? -0.5 : previousPoints[i].doubleValue();
090
091            // H[j-1](a)
092            double hma = H0;
093            // H[j](a)
094            double ha = H1 * a;
095            // H[j-1](b)
096            double hmb = H0;
097            // H[j](b)
098            double hb = H1 * b;
099            for (int j = 1; j < numberOfPoints; j++) {
100                // Compute H[j+1](a) and H[j+1](b)
101                final double jp1 = j + 1;
102                final double s = FastMath.sqrt(2 / jp1);
103                final double sm = FastMath.sqrt(j / jp1);
104                final double hpa = s * a * ha - sm * hma;
105                final double hpb = s * b * hb - sm * hmb;
106                hma = ha;
107                ha = hpa;
108                hmb = hb;
109                hb = hpb;
110            }
111
112            // Now ha = H[n+1](a), and hma = H[n](a) (same holds for b).
113            // Middle of the interval.
114            double c = 0.5 * (a + b);
115            // P[j-1](c)
116            double hmc = H0;
117            // P[j](c)
118            double hc = H1 * c;
119            boolean done = false;
120            while (!done) {
121                done = b - a <= Math.ulp(c);
122                hmc = H0;
123                hc = H1 * c;
124                for (int j = 1; j < numberOfPoints; j++) {
125                    // Compute H[j+1](c)
126                    final double jp1 = j + 1;
127                    final double s = FastMath.sqrt(2 / jp1);
128                    final double sm = FastMath.sqrt(j / jp1);
129                    final double hpc = s * c * hc - sm * hmc;
130                    hmc = hc;
131                    hc = hpc;
132                }
133                // Now h = H[n+1](c) and hm = H[n](c).
134                if (!done) {
135                    if (ha * hc < 0) {
136                        b = c;
137                        hmb = hmc;
138                        hb = hc;
139                    } else {
140                        a = c;
141                        hma = hmc;
142                        ha = hc;
143                    }
144                    c = 0.5 * (a + b);
145                }
146            }
147            final double d = sqrtTwoTimesNumPoints * hmc;
148            final double w = 2 / (d * d);
149
150            points[i] = c;
151            weights[i] = w;
152
153            final int idx = lastNumPoints - i;
154            points[idx] = -c;
155            weights[idx] = w;
156        }
157
158        // If "numberOfPoints" is odd, 0 is a root.
159        // Note: as written, the test for oddness will work for negative
160        // integers too (although it is not necessary here), preventing
161        // a FindBugs warning.
162        if (numberOfPoints % 2 != 0) {
163            double hm = H0;
164            for (int j = 1; j < numberOfPoints; j += 2) {
165                final double jp1 = j + 1;
166                hm = -FastMath.sqrt(j / jp1) * hm;
167            }
168            final double d = sqrtTwoTimesNumPoints * hm;
169            final double w = 2 / (d * d);
170
171            points[iMax] = 0d;
172            weights[iMax] = w;
173        }
174
175        return new Pair<Double[], Double[]>(points, weights);
176    }
177}