001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.math3.analysis.interpolation; 018 019import org.apache.commons.math3.analysis.polynomials.PolynomialFunction; 020import org.apache.commons.math3.analysis.polynomials.PolynomialSplineFunction; 021import org.apache.commons.math3.exception.DimensionMismatchException; 022import org.apache.commons.math3.exception.NonMonotonicSequenceException; 023import org.apache.commons.math3.exception.NumberIsTooSmallException; 024import org.apache.commons.math3.exception.util.LocalizedFormats; 025import org.apache.commons.math3.util.MathArrays; 026 027/** 028 * Computes a natural (also known as "free", "unclamped") cubic spline interpolation for the data set. 029 * <p> 030 * The {@link #interpolate(double[], double[])} method returns a {@link PolynomialSplineFunction} 031 * consisting of n cubic polynomials, defined over the subintervals determined by the x values, 032 * {@code x[0] < x[i] ... < x[n].} The x values are referred to as "knot points." 033 * <p> 034 * The value of the PolynomialSplineFunction at a point x that is greater than or equal to the smallest 035 * knot point and strictly less than the largest knot point is computed by finding the subinterval to which 036 * x belongs and computing the value of the corresponding polynomial at <code>x - x[i] </code> where 037 * <code>i</code> is the index of the subinterval. See {@link PolynomialSplineFunction} for more details. 038 * </p> 039 * <p> 040 * The interpolating polynomials satisfy: <ol> 041 * <li>The value of the PolynomialSplineFunction at each of the input x values equals the 042 * corresponding y value.</li> 043 * <li>Adjacent polynomials are equal through two derivatives at the knot points (i.e., adjacent polynomials 044 * "match up" at the knot points, as do their first and second derivatives).</li> 045 * </ol> 046 * <p> 047 * The cubic spline interpolation algorithm implemented is as described in R.L. Burden, J.D. Faires, 048 * <u>Numerical Analysis</u>, 4th Ed., 1989, PWS-Kent, ISBN 0-53491-585-X, pp 126-131. 049 * </p> 050 * 051 */ 052public class SplineInterpolator implements UnivariateInterpolator { 053 /** 054 * Computes an interpolating function for the data set. 055 * @param x the arguments for the interpolation points 056 * @param y the values for the interpolation points 057 * @return a function which interpolates the data set 058 * @throws DimensionMismatchException if {@code x} and {@code y} 059 * have different sizes. 060 * @throws NonMonotonicSequenceException if {@code x} is not sorted in 061 * strict increasing order. 062 * @throws NumberIsTooSmallException if the size of {@code x} is smaller 063 * than 3. 064 */ 065 public PolynomialSplineFunction interpolate(double x[], double y[]) 066 throws DimensionMismatchException, 067 NumberIsTooSmallException, 068 NonMonotonicSequenceException { 069 if (x.length != y.length) { 070 throw new DimensionMismatchException(x.length, y.length); 071 } 072 073 if (x.length < 3) { 074 throw new NumberIsTooSmallException(LocalizedFormats.NUMBER_OF_POINTS, 075 x.length, 3, true); 076 } 077 078 // Number of intervals. The number of data points is n + 1. 079 final int n = x.length - 1; 080 081 MathArrays.checkOrder(x); 082 083 // Differences between knot points 084 final double h[] = new double[n]; 085 for (int i = 0; i < n; i++) { 086 h[i] = x[i + 1] - x[i]; 087 } 088 089 final double mu[] = new double[n]; 090 final double z[] = new double[n + 1]; 091 mu[0] = 0d; 092 z[0] = 0d; 093 double g = 0; 094 for (int i = 1; i < n; i++) { 095 g = 2d * (x[i+1] - x[i - 1]) - h[i - 1] * mu[i -1]; 096 mu[i] = h[i] / g; 097 z[i] = (3d * (y[i + 1] * h[i - 1] - y[i] * (x[i + 1] - x[i - 1])+ y[i - 1] * h[i]) / 098 (h[i - 1] * h[i]) - h[i - 1] * z[i - 1]) / g; 099 } 100 101 // cubic spline coefficients -- b is linear, c quadratic, d is cubic (original y's are constants) 102 final double b[] = new double[n]; 103 final double c[] = new double[n + 1]; 104 final double d[] = new double[n]; 105 106 z[n] = 0d; 107 c[n] = 0d; 108 109 for (int j = n -1; j >=0; j--) { 110 c[j] = z[j] - mu[j] * c[j + 1]; 111 b[j] = (y[j + 1] - y[j]) / h[j] - h[j] * (c[j + 1] + 2d * c[j]) / 3d; 112 d[j] = (c[j + 1] - c[j]) / (3d * h[j]); 113 } 114 115 final PolynomialFunction polynomials[] = new PolynomialFunction[n]; 116 final double coefficients[] = new double[4]; 117 for (int i = 0; i < n; i++) { 118 coefficients[0] = y[i]; 119 coefficients[1] = b[i]; 120 coefficients[2] = c[i]; 121 coefficients[3] = d[i]; 122 polynomials[i] = new PolynomialFunction(coefficients); 123 } 124 125 return new PolynomialSplineFunction(x, polynomials); 126 } 127}