001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017package org.apache.commons.math3.analysis.interpolation;
018
019import org.apache.commons.math3.exception.DimensionMismatchException;
020import org.apache.commons.math3.exception.NoDataException;
021import org.apache.commons.math3.exception.NonMonotonicSequenceException;
022import org.apache.commons.math3.exception.NumberIsTooSmallException;
023import org.apache.commons.math3.util.MathArrays;
024
025/**
026 * Generates a tricubic interpolating function.
027 *
028 * @since 2.2
029 * @deprecated To be removed in 4.0 (see MATH-1166).
030 */
031@Deprecated
032public class TricubicSplineInterpolator
033    implements TrivariateGridInterpolator {
034    /**
035     * {@inheritDoc}
036     */
037    public TricubicSplineInterpolatingFunction interpolate(final double[] xval,
038                                                           final double[] yval,
039                                                           final double[] zval,
040                                                           final double[][][] fval)
041        throws NoDataException, NumberIsTooSmallException,
042               DimensionMismatchException, NonMonotonicSequenceException {
043        if (xval.length == 0 || yval.length == 0 || zval.length == 0 || fval.length == 0) {
044            throw new NoDataException();
045        }
046        if (xval.length != fval.length) {
047            throw new DimensionMismatchException(xval.length, fval.length);
048        }
049
050        MathArrays.checkOrder(xval);
051        MathArrays.checkOrder(yval);
052        MathArrays.checkOrder(zval);
053
054        final int xLen = xval.length;
055        final int yLen = yval.length;
056        final int zLen = zval.length;
057
058        // Samples, re-ordered as (z, x, y) and (y, z, x) tuplets
059        // fvalXY[k][i][j] = f(xval[i], yval[j], zval[k])
060        // fvalZX[j][k][i] = f(xval[i], yval[j], zval[k])
061        final double[][][] fvalXY = new double[zLen][xLen][yLen];
062        final double[][][] fvalZX = new double[yLen][zLen][xLen];
063        for (int i = 0; i < xLen; i++) {
064            if (fval[i].length != yLen) {
065                throw new DimensionMismatchException(fval[i].length, yLen);
066            }
067
068            for (int j = 0; j < yLen; j++) {
069                if (fval[i][j].length != zLen) {
070                    throw new DimensionMismatchException(fval[i][j].length, zLen);
071                }
072
073                for (int k = 0; k < zLen; k++) {
074                    final double v = fval[i][j][k];
075                    fvalXY[k][i][j] = v;
076                    fvalZX[j][k][i] = v;
077                }
078            }
079        }
080
081        final BicubicSplineInterpolator bsi = new BicubicSplineInterpolator(true);
082
083        // For each line x[i] (0 <= i < xLen), construct a 2D spline in y and z
084        final BicubicSplineInterpolatingFunction[] xSplineYZ
085            = new BicubicSplineInterpolatingFunction[xLen];
086        for (int i = 0; i < xLen; i++) {
087            xSplineYZ[i] = bsi.interpolate(yval, zval, fval[i]);
088        }
089
090        // For each line y[j] (0 <= j < yLen), construct a 2D spline in z and x
091        final BicubicSplineInterpolatingFunction[] ySplineZX
092            = new BicubicSplineInterpolatingFunction[yLen];
093        for (int j = 0; j < yLen; j++) {
094            ySplineZX[j] = bsi.interpolate(zval, xval, fvalZX[j]);
095        }
096
097        // For each line z[k] (0 <= k < zLen), construct a 2D spline in x and y
098        final BicubicSplineInterpolatingFunction[] zSplineXY
099            = new BicubicSplineInterpolatingFunction[zLen];
100        for (int k = 0; k < zLen; k++) {
101            zSplineXY[k] = bsi.interpolate(xval, yval, fvalXY[k]);
102        }
103
104        // Partial derivatives wrt x and wrt y
105        final double[][][] dFdX = new double[xLen][yLen][zLen];
106        final double[][][] dFdY = new double[xLen][yLen][zLen];
107        final double[][][] d2FdXdY = new double[xLen][yLen][zLen];
108        for (int k = 0; k < zLen; k++) {
109            final BicubicSplineInterpolatingFunction f = zSplineXY[k];
110            for (int i = 0; i < xLen; i++) {
111                final double x = xval[i];
112                for (int j = 0; j < yLen; j++) {
113                    final double y = yval[j];
114                    dFdX[i][j][k] = f.partialDerivativeX(x, y);
115                    dFdY[i][j][k] = f.partialDerivativeY(x, y);
116                    d2FdXdY[i][j][k] = f.partialDerivativeXY(x, y);
117                }
118            }
119        }
120
121        // Partial derivatives wrt y and wrt z
122        final double[][][] dFdZ = new double[xLen][yLen][zLen];
123        final double[][][] d2FdYdZ = new double[xLen][yLen][zLen];
124        for (int i = 0; i < xLen; i++) {
125            final BicubicSplineInterpolatingFunction f = xSplineYZ[i];
126            for (int j = 0; j < yLen; j++) {
127                final double y = yval[j];
128                for (int k = 0; k < zLen; k++) {
129                    final double z = zval[k];
130                    dFdZ[i][j][k] = f.partialDerivativeY(y, z);
131                    d2FdYdZ[i][j][k] = f.partialDerivativeXY(y, z);
132                }
133            }
134        }
135
136        // Partial derivatives wrt x and wrt z
137        final double[][][] d2FdZdX = new double[xLen][yLen][zLen];
138        for (int j = 0; j < yLen; j++) {
139            final BicubicSplineInterpolatingFunction f = ySplineZX[j];
140            for (int k = 0; k < zLen; k++) {
141                final double z = zval[k];
142                for (int i = 0; i < xLen; i++) {
143                    final double x = xval[i];
144                    d2FdZdX[i][j][k] = f.partialDerivativeXY(z, x);
145                }
146            }
147        }
148
149        // Third partial cross-derivatives
150        final double[][][] d3FdXdYdZ = new double[xLen][yLen][zLen];
151        for (int i = 0; i < xLen ; i++) {
152            final int nI = nextIndex(i, xLen);
153            final int pI = previousIndex(i);
154            for (int j = 0; j < yLen; j++) {
155                final int nJ = nextIndex(j, yLen);
156                final int pJ = previousIndex(j);
157                for (int k = 0; k < zLen; k++) {
158                    final int nK = nextIndex(k, zLen);
159                    final int pK = previousIndex(k);
160
161                    // XXX Not sure about this formula
162                    d3FdXdYdZ[i][j][k] = (fval[nI][nJ][nK] - fval[nI][pJ][nK] -
163                                          fval[pI][nJ][nK] + fval[pI][pJ][nK] -
164                                          fval[nI][nJ][pK] + fval[nI][pJ][pK] +
165                                          fval[pI][nJ][pK] - fval[pI][pJ][pK]) /
166                        ((xval[nI] - xval[pI]) * (yval[nJ] - yval[pJ]) * (zval[nK] - zval[pK])) ;
167                }
168            }
169        }
170
171        // Create the interpolating splines
172        return new TricubicSplineInterpolatingFunction(xval, yval, zval, fval,
173                                                       dFdX, dFdY, dFdZ,
174                                                       d2FdXdY, d2FdZdX, d2FdYdZ,
175                                                       d3FdXdYdZ);
176    }
177
178    /**
179     * Compute the next index of an array, clipping if necessary.
180     * It is assumed (but not checked) that {@code i} is larger than or equal to 0.
181     *
182     * @param i Index
183     * @param max Upper limit of the array
184     * @return the next index
185     */
186    private int nextIndex(int i, int max) {
187        final int index = i + 1;
188        return index < max ? index : index - 1;
189    }
190    /**
191     * Compute the previous index of an array, clipping if necessary.
192     * It is assumed (but not checked) that {@code i} is smaller than the size of the array.
193     *
194     * @param i Index
195     * @return the previous index
196     */
197    private int previousIndex(int i) {
198        final int index = i - 1;
199        return index >= 0 ? index : 0;
200    }
201}