001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.math3.analysis.polynomials; 018 019import org.apache.commons.math3.analysis.differentiation.DerivativeStructure; 020import org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction; 021import org.apache.commons.math3.exception.DimensionMismatchException; 022import org.apache.commons.math3.exception.NoDataException; 023import org.apache.commons.math3.exception.NullArgumentException; 024import org.apache.commons.math3.exception.util.LocalizedFormats; 025import org.apache.commons.math3.util.MathUtils; 026 027/** 028 * Implements the representation of a real polynomial function in 029 * Newton Form. For reference, see <b>Elementary Numerical Analysis</b>, 030 * ISBN 0070124477, chapter 2. 031 * <p> 032 * The formula of polynomial in Newton form is 033 * p(x) = a[0] + a[1](x-c[0]) + a[2](x-c[0])(x-c[1]) + ... + 034 * a[n](x-c[0])(x-c[1])...(x-c[n-1]) 035 * Note that the length of a[] is one more than the length of c[]</p> 036 * 037 * @since 1.2 038 */ 039public class PolynomialFunctionNewtonForm implements UnivariateDifferentiableFunction { 040 041 /** 042 * The coefficients of the polynomial, ordered by degree -- i.e. 043 * coefficients[0] is the constant term and coefficients[n] is the 044 * coefficient of x^n where n is the degree of the polynomial. 045 */ 046 private double coefficients[]; 047 048 /** 049 * Centers of the Newton polynomial. 050 */ 051 private final double c[]; 052 053 /** 054 * When all c[i] = 0, a[] becomes normal polynomial coefficients, 055 * i.e. a[i] = coefficients[i]. 056 */ 057 private final double a[]; 058 059 /** 060 * Whether the polynomial coefficients are available. 061 */ 062 private boolean coefficientsComputed; 063 064 /** 065 * Construct a Newton polynomial with the given a[] and c[]. The order of 066 * centers are important in that if c[] shuffle, then values of a[] would 067 * completely change, not just a permutation of old a[]. 068 * <p> 069 * The constructor makes copy of the input arrays and assigns them.</p> 070 * 071 * @param a Coefficients in Newton form formula. 072 * @param c Centers. 073 * @throws NullArgumentException if any argument is {@code null}. 074 * @throws NoDataException if any array has zero length. 075 * @throws DimensionMismatchException if the size difference between 076 * {@code a} and {@code c} is not equal to 1. 077 */ 078 public PolynomialFunctionNewtonForm(double a[], double c[]) 079 throws NullArgumentException, NoDataException, DimensionMismatchException { 080 081 verifyInputArray(a, c); 082 this.a = new double[a.length]; 083 this.c = new double[c.length]; 084 System.arraycopy(a, 0, this.a, 0, a.length); 085 System.arraycopy(c, 0, this.c, 0, c.length); 086 coefficientsComputed = false; 087 } 088 089 /** 090 * Calculate the function value at the given point. 091 * 092 * @param z Point at which the function value is to be computed. 093 * @return the function value. 094 */ 095 public double value(double z) { 096 return evaluate(a, c, z); 097 } 098 099 /** 100 * {@inheritDoc} 101 * @since 3.1 102 */ 103 public DerivativeStructure value(final DerivativeStructure t) { 104 verifyInputArray(a, c); 105 106 final int n = c.length; 107 DerivativeStructure value = new DerivativeStructure(t.getFreeParameters(), t.getOrder(), a[n]); 108 for (int i = n - 1; i >= 0; i--) { 109 value = t.subtract(c[i]).multiply(value).add(a[i]); 110 } 111 112 return value; 113 114 } 115 116 /** 117 * Returns the degree of the polynomial. 118 * 119 * @return the degree of the polynomial 120 */ 121 public int degree() { 122 return c.length; 123 } 124 125 /** 126 * Returns a copy of coefficients in Newton form formula. 127 * <p> 128 * Changes made to the returned copy will not affect the polynomial.</p> 129 * 130 * @return a fresh copy of coefficients in Newton form formula 131 */ 132 public double[] getNewtonCoefficients() { 133 double[] out = new double[a.length]; 134 System.arraycopy(a, 0, out, 0, a.length); 135 return out; 136 } 137 138 /** 139 * Returns a copy of the centers array. 140 * <p> 141 * Changes made to the returned copy will not affect the polynomial.</p> 142 * 143 * @return a fresh copy of the centers array. 144 */ 145 public double[] getCenters() { 146 double[] out = new double[c.length]; 147 System.arraycopy(c, 0, out, 0, c.length); 148 return out; 149 } 150 151 /** 152 * Returns a copy of the coefficients array. 153 * <p> 154 * Changes made to the returned copy will not affect the polynomial.</p> 155 * 156 * @return a fresh copy of the coefficients array. 157 */ 158 public double[] getCoefficients() { 159 if (!coefficientsComputed) { 160 computeCoefficients(); 161 } 162 double[] out = new double[coefficients.length]; 163 System.arraycopy(coefficients, 0, out, 0, coefficients.length); 164 return out; 165 } 166 167 /** 168 * Evaluate the Newton polynomial using nested multiplication. It is 169 * also called <a href="http://mathworld.wolfram.com/HornersRule.html"> 170 * Horner's Rule</a> and takes O(N) time. 171 * 172 * @param a Coefficients in Newton form formula. 173 * @param c Centers. 174 * @param z Point at which the function value is to be computed. 175 * @return the function value. 176 * @throws NullArgumentException if any argument is {@code null}. 177 * @throws NoDataException if any array has zero length. 178 * @throws DimensionMismatchException if the size difference between 179 * {@code a} and {@code c} is not equal to 1. 180 */ 181 public static double evaluate(double a[], double c[], double z) 182 throws NullArgumentException, DimensionMismatchException, NoDataException { 183 verifyInputArray(a, c); 184 185 final int n = c.length; 186 double value = a[n]; 187 for (int i = n - 1; i >= 0; i--) { 188 value = a[i] + (z - c[i]) * value; 189 } 190 191 return value; 192 } 193 194 /** 195 * Calculate the normal polynomial coefficients given the Newton form. 196 * It also uses nested multiplication but takes O(N^2) time. 197 */ 198 protected void computeCoefficients() { 199 final int n = degree(); 200 201 coefficients = new double[n+1]; 202 for (int i = 0; i <= n; i++) { 203 coefficients[i] = 0.0; 204 } 205 206 coefficients[0] = a[n]; 207 for (int i = n-1; i >= 0; i--) { 208 for (int j = n-i; j > 0; j--) { 209 coefficients[j] = coefficients[j-1] - c[i] * coefficients[j]; 210 } 211 coefficients[0] = a[i] - c[i] * coefficients[0]; 212 } 213 214 coefficientsComputed = true; 215 } 216 217 /** 218 * Verifies that the input arrays are valid. 219 * <p> 220 * The centers must be distinct for interpolation purposes, but not 221 * for general use. Thus it is not verified here.</p> 222 * 223 * @param a the coefficients in Newton form formula 224 * @param c the centers 225 * @throws NullArgumentException if any argument is {@code null}. 226 * @throws NoDataException if any array has zero length. 227 * @throws DimensionMismatchException if the size difference between 228 * {@code a} and {@code c} is not equal to 1. 229 * @see org.apache.commons.math3.analysis.interpolation.DividedDifferenceInterpolator#computeDividedDifference(double[], 230 * double[]) 231 */ 232 protected static void verifyInputArray(double a[], double c[]) 233 throws NullArgumentException, NoDataException, DimensionMismatchException { 234 MathUtils.checkNotNull(a); 235 MathUtils.checkNotNull(c); 236 if (a.length == 0 || c.length == 0) { 237 throw new NoDataException(LocalizedFormats.EMPTY_POLYNOMIALS_COEFFICIENTS_ARRAY); 238 } 239 if (a.length != c.length + 1) { 240 throw new DimensionMismatchException(LocalizedFormats.ARRAY_SIZES_SHOULD_HAVE_DIFFERENCE_1, 241 a.length, c.length); 242 } 243 } 244 245}