001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.math3.analysis.polynomials; 018 019import java.util.Arrays; 020 021import org.apache.commons.math3.analysis.DifferentiableUnivariateFunction; 022import org.apache.commons.math3.analysis.UnivariateFunction; 023import org.apache.commons.math3.analysis.differentiation.DerivativeStructure; 024import org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction; 025import org.apache.commons.math3.exception.DimensionMismatchException; 026import org.apache.commons.math3.exception.NonMonotonicSequenceException; 027import org.apache.commons.math3.exception.NullArgumentException; 028import org.apache.commons.math3.exception.NumberIsTooSmallException; 029import org.apache.commons.math3.exception.OutOfRangeException; 030import org.apache.commons.math3.exception.util.LocalizedFormats; 031import org.apache.commons.math3.util.MathArrays; 032 033/** 034 * Represents a polynomial spline function. 035 * <p> 036 * A <strong>polynomial spline function</strong> consists of a set of 037 * <i>interpolating polynomials</i> and an ascending array of domain 038 * <i>knot points</i>, determining the intervals over which the spline function 039 * is defined by the constituent polynomials. The polynomials are assumed to 040 * have been computed to match the values of another function at the knot 041 * points. The value consistency constraints are not currently enforced by 042 * <code>PolynomialSplineFunction</code> itself, but are assumed to hold among 043 * the polynomials and knot points passed to the constructor.</p> 044 * <p> 045 * N.B.: The polynomials in the <code>polynomials</code> property must be 046 * centered on the knot points to compute the spline function values. 047 * See below.</p> 048 * <p> 049 * The domain of the polynomial spline function is 050 * <code>[smallest knot, largest knot]</code>. Attempts to evaluate the 051 * function at values outside of this range generate IllegalArgumentExceptions. 052 * </p> 053 * <p> 054 * The value of the polynomial spline function for an argument <code>x</code> 055 * is computed as follows: 056 * <ol> 057 * <li>The knot array is searched to find the segment to which <code>x</code> 058 * belongs. If <code>x</code> is less than the smallest knot point or greater 059 * than the largest one, an <code>IllegalArgumentException</code> 060 * is thrown.</li> 061 * <li> Let <code>j</code> be the index of the largest knot point that is less 062 * than or equal to <code>x</code>. The value returned is 063 * {@code polynomials[j](x - knot[j])}</li></ol> 064 * 065 */ 066public class PolynomialSplineFunction implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction { 067 /** 068 * Spline segment interval delimiters (knots). 069 * Size is n + 1 for n segments. 070 */ 071 private final double knots[]; 072 /** 073 * The polynomial functions that make up the spline. The first element 074 * determines the value of the spline over the first subinterval, the 075 * second over the second, etc. Spline function values are determined by 076 * evaluating these functions at {@code (x - knot[i])} where i is the 077 * knot segment to which x belongs. 078 */ 079 private final PolynomialFunction polynomials[]; 080 /** 081 * Number of spline segments. It is equal to the number of polynomials and 082 * to the number of partition points - 1. 083 */ 084 private final int n; 085 086 087 /** 088 * Construct a polynomial spline function with the given segment delimiters 089 * and interpolating polynomials. 090 * The constructor copies both arrays and assigns the copies to the knots 091 * and polynomials properties, respectively. 092 * 093 * @param knots Spline segment interval delimiters. 094 * @param polynomials Polynomial functions that make up the spline. 095 * @throws NullArgumentException if either of the input arrays is {@code null}. 096 * @throws NumberIsTooSmallException if knots has length less than 2. 097 * @throws DimensionMismatchException if {@code polynomials.length != knots.length - 1}. 098 * @throws NonMonotonicSequenceException if the {@code knots} array is not strictly increasing. 099 * 100 */ 101 public PolynomialSplineFunction(double knots[], PolynomialFunction polynomials[]) 102 throws NullArgumentException, NumberIsTooSmallException, 103 DimensionMismatchException, NonMonotonicSequenceException{ 104 if (knots == null || 105 polynomials == null) { 106 throw new NullArgumentException(); 107 } 108 if (knots.length < 2) { 109 throw new NumberIsTooSmallException(LocalizedFormats.NOT_ENOUGH_POINTS_IN_SPLINE_PARTITION, 110 2, knots.length, false); 111 } 112 if (knots.length - 1 != polynomials.length) { 113 throw new DimensionMismatchException(polynomials.length, knots.length); 114 } 115 MathArrays.checkOrder(knots); 116 117 this.n = knots.length -1; 118 this.knots = new double[n + 1]; 119 System.arraycopy(knots, 0, this.knots, 0, n + 1); 120 this.polynomials = new PolynomialFunction[n]; 121 System.arraycopy(polynomials, 0, this.polynomials, 0, n); 122 } 123 124 /** 125 * Compute the value for the function. 126 * See {@link PolynomialSplineFunction} for details on the algorithm for 127 * computing the value of the function. 128 * 129 * @param v Point for which the function value should be computed. 130 * @return the value. 131 * @throws OutOfRangeException if {@code v} is outside of the domain of the 132 * spline function (smaller than the smallest knot point or larger than the 133 * largest knot point). 134 */ 135 public double value(double v) { 136 if (v < knots[0] || v > knots[n]) { 137 throw new OutOfRangeException(v, knots[0], knots[n]); 138 } 139 int i = Arrays.binarySearch(knots, v); 140 if (i < 0) { 141 i = -i - 2; 142 } 143 // This will handle the case where v is the last knot value 144 // There are only n-1 polynomials, so if v is the last knot 145 // then we will use the last polynomial to calculate the value. 146 if ( i >= polynomials.length ) { 147 i--; 148 } 149 return polynomials[i].value(v - knots[i]); 150 } 151 152 /** 153 * Get the derivative of the polynomial spline function. 154 * 155 * @return the derivative function. 156 */ 157 public UnivariateFunction derivative() { 158 return polynomialSplineDerivative(); 159 } 160 161 /** 162 * Get the derivative of the polynomial spline function. 163 * 164 * @return the derivative function. 165 */ 166 public PolynomialSplineFunction polynomialSplineDerivative() { 167 PolynomialFunction derivativePolynomials[] = new PolynomialFunction[n]; 168 for (int i = 0; i < n; i++) { 169 derivativePolynomials[i] = polynomials[i].polynomialDerivative(); 170 } 171 return new PolynomialSplineFunction(knots, derivativePolynomials); 172 } 173 174 175 /** {@inheritDoc} 176 * @since 3.1 177 */ 178 public DerivativeStructure value(final DerivativeStructure t) { 179 final double t0 = t.getValue(); 180 if (t0 < knots[0] || t0 > knots[n]) { 181 throw new OutOfRangeException(t0, knots[0], knots[n]); 182 } 183 int i = Arrays.binarySearch(knots, t0); 184 if (i < 0) { 185 i = -i - 2; 186 } 187 // This will handle the case where t is the last knot value 188 // There are only n-1 polynomials, so if t is the last knot 189 // then we will use the last polynomial to calculate the value. 190 if ( i >= polynomials.length ) { 191 i--; 192 } 193 return polynomials[i].value(t.subtract(knots[i])); 194 } 195 196 /** 197 * Get the number of spline segments. 198 * It is also the number of polynomials and the number of knot points - 1. 199 * 200 * @return the number of spline segments. 201 */ 202 public int getN() { 203 return n; 204 } 205 206 /** 207 * Get a copy of the interpolating polynomials array. 208 * It returns a fresh copy of the array. Changes made to the copy will 209 * not affect the polynomials property. 210 * 211 * @return the interpolating polynomials. 212 */ 213 public PolynomialFunction[] getPolynomials() { 214 PolynomialFunction p[] = new PolynomialFunction[n]; 215 System.arraycopy(polynomials, 0, p, 0, n); 216 return p; 217 } 218 219 /** 220 * Get an array copy of the knot points. 221 * It returns a fresh copy of the array. Changes made to the copy 222 * will not affect the knots property. 223 * 224 * @return the knot points. 225 */ 226 public double[] getKnots() { 227 double out[] = new double[n + 1]; 228 System.arraycopy(knots, 0, out, 0, n + 1); 229 return out; 230 } 231 232 /** 233 * Indicates whether a point is within the interpolation range. 234 * 235 * @param x Point. 236 * @return {@code true} if {@code x} is a valid point. 237 */ 238 public boolean isValidPoint(double x) { 239 if (x < knots[0] || 240 x > knots[n]) { 241 return false; 242 } else { 243 return true; 244 } 245 } 246}