001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 018package org.apache.commons.math3.analysis.solvers; 019 020import org.apache.commons.math3.util.FastMath; 021import org.apache.commons.math3.analysis.UnivariateFunction; 022import org.apache.commons.math3.exception.ConvergenceException; 023import org.apache.commons.math3.exception.MathInternalError; 024 025/** 026 * Base class for all bracketing <em>Secant</em>-based methods for root-finding 027 * (approximating a zero of a univariate real function). 028 * 029 * <p>Implementation of the {@link RegulaFalsiSolver <em>Regula Falsi</em>} and 030 * {@link IllinoisSolver <em>Illinois</em>} methods is based on the 031 * following article: M. Dowell and P. Jarratt, 032 * <em>A modified regula falsi method for computing the root of an 033 * equation</em>, BIT Numerical Mathematics, volume 11, number 2, 034 * pages 168-174, Springer, 1971.</p> 035 * 036 * <p>Implementation of the {@link PegasusSolver <em>Pegasus</em>} method is 037 * based on the following article: M. Dowell and P. Jarratt, 038 * <em>The "Pegasus" method for computing the root of an equation</em>, 039 * BIT Numerical Mathematics, volume 12, number 4, pages 503-508, Springer, 040 * 1972.</p> 041 * 042 * <p>The {@link SecantSolver <em>Secant</em>} method is <em>not</em> a 043 * bracketing method, so it is not implemented here. It has a separate 044 * implementation.</p> 045 * 046 * @since 3.0 047 */ 048public abstract class BaseSecantSolver 049 extends AbstractUnivariateSolver 050 implements BracketedUnivariateSolver<UnivariateFunction> { 051 052 /** Default absolute accuracy. */ 053 protected static final double DEFAULT_ABSOLUTE_ACCURACY = 1e-6; 054 055 /** The kinds of solutions that the algorithm may accept. */ 056 private AllowedSolution allowed; 057 058 /** The <em>Secant</em>-based root-finding method to use. */ 059 private final Method method; 060 061 /** 062 * Construct a solver. 063 * 064 * @param absoluteAccuracy Absolute accuracy. 065 * @param method <em>Secant</em>-based root-finding method to use. 066 */ 067 protected BaseSecantSolver(final double absoluteAccuracy, final Method method) { 068 super(absoluteAccuracy); 069 this.allowed = AllowedSolution.ANY_SIDE; 070 this.method = method; 071 } 072 073 /** 074 * Construct a solver. 075 * 076 * @param relativeAccuracy Relative accuracy. 077 * @param absoluteAccuracy Absolute accuracy. 078 * @param method <em>Secant</em>-based root-finding method to use. 079 */ 080 protected BaseSecantSolver(final double relativeAccuracy, 081 final double absoluteAccuracy, 082 final Method method) { 083 super(relativeAccuracy, absoluteAccuracy); 084 this.allowed = AllowedSolution.ANY_SIDE; 085 this.method = method; 086 } 087 088 /** 089 * Construct a solver. 090 * 091 * @param relativeAccuracy Maximum relative error. 092 * @param absoluteAccuracy Maximum absolute error. 093 * @param functionValueAccuracy Maximum function value error. 094 * @param method <em>Secant</em>-based root-finding method to use 095 */ 096 protected BaseSecantSolver(final double relativeAccuracy, 097 final double absoluteAccuracy, 098 final double functionValueAccuracy, 099 final Method method) { 100 super(relativeAccuracy, absoluteAccuracy, functionValueAccuracy); 101 this.allowed = AllowedSolution.ANY_SIDE; 102 this.method = method; 103 } 104 105 /** {@inheritDoc} */ 106 public double solve(final int maxEval, final UnivariateFunction f, 107 final double min, final double max, 108 final AllowedSolution allowedSolution) { 109 return solve(maxEval, f, min, max, min + 0.5 * (max - min), allowedSolution); 110 } 111 112 /** {@inheritDoc} */ 113 public double solve(final int maxEval, final UnivariateFunction f, 114 final double min, final double max, final double startValue, 115 final AllowedSolution allowedSolution) { 116 this.allowed = allowedSolution; 117 return super.solve(maxEval, f, min, max, startValue); 118 } 119 120 /** {@inheritDoc} */ 121 @Override 122 public double solve(final int maxEval, final UnivariateFunction f, 123 final double min, final double max, final double startValue) { 124 return solve(maxEval, f, min, max, startValue, AllowedSolution.ANY_SIDE); 125 } 126 127 /** 128 * {@inheritDoc} 129 * 130 * @throws ConvergenceException if the algorithm failed due to finite 131 * precision. 132 */ 133 @Override 134 protected final double doSolve() 135 throws ConvergenceException { 136 // Get initial solution 137 double x0 = getMin(); 138 double x1 = getMax(); 139 double f0 = computeObjectiveValue(x0); 140 double f1 = computeObjectiveValue(x1); 141 142 // If one of the bounds is the exact root, return it. Since these are 143 // not under-approximations or over-approximations, we can return them 144 // regardless of the allowed solutions. 145 if (f0 == 0.0) { 146 return x0; 147 } 148 if (f1 == 0.0) { 149 return x1; 150 } 151 152 // Verify bracketing of initial solution. 153 verifyBracketing(x0, x1); 154 155 // Get accuracies. 156 final double ftol = getFunctionValueAccuracy(); 157 final double atol = getAbsoluteAccuracy(); 158 final double rtol = getRelativeAccuracy(); 159 160 // Keep track of inverted intervals, meaning that the left bound is 161 // larger than the right bound. 162 boolean inverted = false; 163 164 // Keep finding better approximations. 165 while (true) { 166 // Calculate the next approximation. 167 final double x = x1 - ((f1 * (x1 - x0)) / (f1 - f0)); 168 final double fx = computeObjectiveValue(x); 169 170 // If the new approximation is the exact root, return it. Since 171 // this is not an under-approximation or an over-approximation, 172 // we can return it regardless of the allowed solutions. 173 if (fx == 0.0) { 174 return x; 175 } 176 177 // Update the bounds with the new approximation. 178 if (f1 * fx < 0) { 179 // The value of x1 has switched to the other bound, thus inverting 180 // the interval. 181 x0 = x1; 182 f0 = f1; 183 inverted = !inverted; 184 } else { 185 switch (method) { 186 case ILLINOIS: 187 f0 *= 0.5; 188 break; 189 case PEGASUS: 190 f0 *= f1 / (f1 + fx); 191 break; 192 case REGULA_FALSI: 193 // Detect early that algorithm is stuck, instead of waiting 194 // for the maximum number of iterations to be exceeded. 195 if (x == x1) { 196 throw new ConvergenceException(); 197 } 198 break; 199 default: 200 // Should never happen. 201 throw new MathInternalError(); 202 } 203 } 204 // Update from [x0, x1] to [x0, x]. 205 x1 = x; 206 f1 = fx; 207 208 // If the function value of the last approximation is too small, 209 // given the function value accuracy, then we can't get closer to 210 // the root than we already are. 211 if (FastMath.abs(f1) <= ftol) { 212 switch (allowed) { 213 case ANY_SIDE: 214 return x1; 215 case LEFT_SIDE: 216 if (inverted) { 217 return x1; 218 } 219 break; 220 case RIGHT_SIDE: 221 if (!inverted) { 222 return x1; 223 } 224 break; 225 case BELOW_SIDE: 226 if (f1 <= 0) { 227 return x1; 228 } 229 break; 230 case ABOVE_SIDE: 231 if (f1 >= 0) { 232 return x1; 233 } 234 break; 235 default: 236 throw new MathInternalError(); 237 } 238 } 239 240 // If the current interval is within the given accuracies, we 241 // are satisfied with the current approximation. 242 if (FastMath.abs(x1 - x0) < FastMath.max(rtol * FastMath.abs(x1), 243 atol)) { 244 switch (allowed) { 245 case ANY_SIDE: 246 return x1; 247 case LEFT_SIDE: 248 return inverted ? x1 : x0; 249 case RIGHT_SIDE: 250 return inverted ? x0 : x1; 251 case BELOW_SIDE: 252 return (f1 <= 0) ? x1 : x0; 253 case ABOVE_SIDE: 254 return (f1 >= 0) ? x1 : x0; 255 default: 256 throw new MathInternalError(); 257 } 258 } 259 } 260 } 261 262 /** <em>Secant</em>-based root-finding methods. */ 263 protected enum Method { 264 265 /** 266 * The {@link RegulaFalsiSolver <em>Regula Falsi</em>} or 267 * <em>False Position</em> method. 268 */ 269 REGULA_FALSI, 270 271 /** The {@link IllinoisSolver <em>Illinois</em>} method. */ 272 ILLINOIS, 273 274 /** The {@link PegasusSolver <em>Pegasus</em>} method. */ 275 PEGASUS; 276 277 } 278}