001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 018package org.apache.commons.math3.analysis.solvers; 019 020/** 021 * Implements the <em>Pegasus</em> method for root-finding (approximating 022 * a zero of a univariate real function). It is a modified 023 * {@link RegulaFalsiSolver <em>Regula Falsi</em>} method. 024 * 025 * <p>Like the <em>Regula Falsi</em> method, convergence is guaranteed by 026 * maintaining a bracketed solution. The <em>Pegasus</em> method however, 027 * should converge much faster than the original <em>Regula Falsi</em> 028 * method. Furthermore, this implementation of the <em>Pegasus</em> method 029 * should not suffer from the same implementation issues as the <em>Regula 030 * Falsi</em> method, which may fail to convergence in certain cases. Also, 031 * the <em>Pegasus</em> method should converge faster than the 032 * {@link IllinoisSolver <em>Illinois</em>} method, another <em>Regula 033 * Falsi</em>-based method.</p> 034 * 035 * <p>The <em>Pegasus</em> method assumes that the function is continuous, 036 * but not necessarily smooth.</p> 037 * 038 * <p>Implementation based on the following article: M. Dowell and P. Jarratt, 039 * <em>The "Pegasus" method for computing the root of an equation</em>, 040 * BIT Numerical Mathematics, volume 12, number 4, pages 503-508, Springer, 041 * 1972.</p> 042 * 043 * @since 3.0 044 */ 045public class PegasusSolver extends BaseSecantSolver { 046 047 /** Construct a solver with default accuracy (1e-6). */ 048 public PegasusSolver() { 049 super(DEFAULT_ABSOLUTE_ACCURACY, Method.PEGASUS); 050 } 051 052 /** 053 * Construct a solver. 054 * 055 * @param absoluteAccuracy Absolute accuracy. 056 */ 057 public PegasusSolver(final double absoluteAccuracy) { 058 super(absoluteAccuracy, Method.PEGASUS); 059 } 060 061 /** 062 * Construct a solver. 063 * 064 * @param relativeAccuracy Relative accuracy. 065 * @param absoluteAccuracy Absolute accuracy. 066 */ 067 public PegasusSolver(final double relativeAccuracy, 068 final double absoluteAccuracy) { 069 super(relativeAccuracy, absoluteAccuracy, Method.PEGASUS); 070 } 071 072 /** 073 * Construct a solver. 074 * 075 * @param relativeAccuracy Relative accuracy. 076 * @param absoluteAccuracy Absolute accuracy. 077 * @param functionValueAccuracy Maximum function value error. 078 */ 079 public PegasusSolver(final double relativeAccuracy, 080 final double absoluteAccuracy, 081 final double functionValueAccuracy) { 082 super(relativeAccuracy, absoluteAccuracy, functionValueAccuracy, Method.PEGASUS); 083 } 084}