001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.math3.analysis.solvers; 018 019import org.apache.commons.math3.util.FastMath; 020import org.apache.commons.math3.exception.NoBracketingException; 021import org.apache.commons.math3.exception.TooManyEvaluationsException; 022 023/** 024 * Implements the <a href="http://mathworld.wolfram.com/RiddersMethod.html"> 025 * Ridders' Method</a> for root finding of real univariate functions. For 026 * reference, see C. Ridders, <i>A new algorithm for computing a single root 027 * of a real continuous function </i>, IEEE Transactions on Circuits and 028 * Systems, 26 (1979), 979 - 980. 029 * <p> 030 * The function should be continuous but not necessarily smooth.</p> 031 * 032 * @since 1.2 033 */ 034public class RiddersSolver extends AbstractUnivariateSolver { 035 /** Default absolute accuracy. */ 036 private static final double DEFAULT_ABSOLUTE_ACCURACY = 1e-6; 037 038 /** 039 * Construct a solver with default accuracy (1e-6). 040 */ 041 public RiddersSolver() { 042 this(DEFAULT_ABSOLUTE_ACCURACY); 043 } 044 /** 045 * Construct a solver. 046 * 047 * @param absoluteAccuracy Absolute accuracy. 048 */ 049 public RiddersSolver(double absoluteAccuracy) { 050 super(absoluteAccuracy); 051 } 052 /** 053 * Construct a solver. 054 * 055 * @param relativeAccuracy Relative accuracy. 056 * @param absoluteAccuracy Absolute accuracy. 057 */ 058 public RiddersSolver(double relativeAccuracy, 059 double absoluteAccuracy) { 060 super(relativeAccuracy, absoluteAccuracy); 061 } 062 063 /** 064 * {@inheritDoc} 065 */ 066 @Override 067 protected double doSolve() 068 throws TooManyEvaluationsException, 069 NoBracketingException { 070 double min = getMin(); 071 double max = getMax(); 072 // [x1, x2] is the bracketing interval in each iteration 073 // x3 is the midpoint of [x1, x2] 074 // x is the new root approximation and an endpoint of the new interval 075 double x1 = min; 076 double y1 = computeObjectiveValue(x1); 077 double x2 = max; 078 double y2 = computeObjectiveValue(x2); 079 080 // check for zeros before verifying bracketing 081 if (y1 == 0) { 082 return min; 083 } 084 if (y2 == 0) { 085 return max; 086 } 087 verifyBracketing(min, max); 088 089 final double absoluteAccuracy = getAbsoluteAccuracy(); 090 final double functionValueAccuracy = getFunctionValueAccuracy(); 091 final double relativeAccuracy = getRelativeAccuracy(); 092 093 double oldx = Double.POSITIVE_INFINITY; 094 while (true) { 095 // calculate the new root approximation 096 final double x3 = 0.5 * (x1 + x2); 097 final double y3 = computeObjectiveValue(x3); 098 if (FastMath.abs(y3) <= functionValueAccuracy) { 099 return x3; 100 } 101 final double delta = 1 - (y1 * y2) / (y3 * y3); // delta > 1 due to bracketing 102 final double correction = (FastMath.signum(y2) * FastMath.signum(y3)) * 103 (x3 - x1) / FastMath.sqrt(delta); 104 final double x = x3 - correction; // correction != 0 105 final double y = computeObjectiveValue(x); 106 107 // check for convergence 108 final double tolerance = FastMath.max(relativeAccuracy * FastMath.abs(x), absoluteAccuracy); 109 if (FastMath.abs(x - oldx) <= tolerance) { 110 return x; 111 } 112 if (FastMath.abs(y) <= functionValueAccuracy) { 113 return x; 114 } 115 116 // prepare the new interval for next iteration 117 // Ridders' method guarantees x1 < x < x2 118 if (correction > 0.0) { // x1 < x < x3 119 if (FastMath.signum(y1) + FastMath.signum(y) == 0.0) { 120 x2 = x; 121 y2 = y; 122 } else { 123 x1 = x; 124 x2 = x3; 125 y1 = y; 126 y2 = y3; 127 } 128 } else { // x3 < x < x2 129 if (FastMath.signum(y2) + FastMath.signum(y) == 0.0) { 130 x1 = x; 131 y1 = y; 132 } else { 133 x1 = x3; 134 x2 = x; 135 y1 = y3; 136 y2 = y; 137 } 138 } 139 oldx = x; 140 } 141 } 142}