001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017
018package org.apache.commons.math3.analysis.solvers;
019
020import org.apache.commons.math3.util.FastMath;
021import org.apache.commons.math3.exception.NoBracketingException;
022import org.apache.commons.math3.exception.TooManyEvaluationsException;
023
024/**
025 * Implements the <em>Secant</em> method for root-finding (approximating a
026 * zero of a univariate real function). The solution that is maintained is
027 * not bracketed, and as such convergence is not guaranteed.
028 *
029 * <p>Implementation based on the following article: M. Dowell and P. Jarratt,
030 * <em>A modified regula falsi method for computing the root of an
031 * equation</em>, BIT Numerical Mathematics, volume 11, number 2,
032 * pages 168-174, Springer, 1971.</p>
033 *
034 * <p>Note that since release 3.0 this class implements the actual
035 * <em>Secant</em> algorithm, and not a modified one. As such, the 3.0 version
036 * is not backwards compatible with previous versions. To use an algorithm
037 * similar to the pre-3.0 releases, use the
038 * {@link IllinoisSolver <em>Illinois</em>} algorithm or the
039 * {@link PegasusSolver <em>Pegasus</em>} algorithm.</p>
040 *
041 */
042public class SecantSolver extends AbstractUnivariateSolver {
043
044    /** Default absolute accuracy. */
045    protected static final double DEFAULT_ABSOLUTE_ACCURACY = 1e-6;
046
047    /** Construct a solver with default accuracy (1e-6). */
048    public SecantSolver() {
049        super(DEFAULT_ABSOLUTE_ACCURACY);
050    }
051
052    /**
053     * Construct a solver.
054     *
055     * @param absoluteAccuracy absolute accuracy
056     */
057    public SecantSolver(final double absoluteAccuracy) {
058        super(absoluteAccuracy);
059    }
060
061    /**
062     * Construct a solver.
063     *
064     * @param relativeAccuracy relative accuracy
065     * @param absoluteAccuracy absolute accuracy
066     */
067    public SecantSolver(final double relativeAccuracy,
068                        final double absoluteAccuracy) {
069        super(relativeAccuracy, absoluteAccuracy);
070    }
071
072    /** {@inheritDoc} */
073    @Override
074    protected final double doSolve()
075        throws TooManyEvaluationsException,
076               NoBracketingException {
077        // Get initial solution
078        double x0 = getMin();
079        double x1 = getMax();
080        double f0 = computeObjectiveValue(x0);
081        double f1 = computeObjectiveValue(x1);
082
083        // If one of the bounds is the exact root, return it. Since these are
084        // not under-approximations or over-approximations, we can return them
085        // regardless of the allowed solutions.
086        if (f0 == 0.0) {
087            return x0;
088        }
089        if (f1 == 0.0) {
090            return x1;
091        }
092
093        // Verify bracketing of initial solution.
094        verifyBracketing(x0, x1);
095
096        // Get accuracies.
097        final double ftol = getFunctionValueAccuracy();
098        final double atol = getAbsoluteAccuracy();
099        final double rtol = getRelativeAccuracy();
100
101        // Keep finding better approximations.
102        while (true) {
103            // Calculate the next approximation.
104            final double x = x1 - ((f1 * (x1 - x0)) / (f1 - f0));
105            final double fx = computeObjectiveValue(x);
106
107            // If the new approximation is the exact root, return it. Since
108            // this is not an under-approximation or an over-approximation,
109            // we can return it regardless of the allowed solutions.
110            if (fx == 0.0) {
111                return x;
112            }
113
114            // Update the bounds with the new approximation.
115            x0 = x1;
116            f0 = f1;
117            x1 = x;
118            f1 = fx;
119
120            // If the function value of the last approximation is too small,
121            // given the function value accuracy, then we can't get closer to
122            // the root than we already are.
123            if (FastMath.abs(f1) <= ftol) {
124                return x1;
125            }
126
127            // If the current interval is within the given accuracies, we
128            // are satisfied with the current approximation.
129            if (FastMath.abs(x1 - x0) < FastMath.max(rtol * FastMath.abs(x1), atol)) {
130                return x1;
131            }
132        }
133    }
134
135}