001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017
018package org.apache.commons.math3.complex;
019
020import java.io.Serializable;
021import org.apache.commons.math3.util.FastMath;
022import org.apache.commons.math3.util.MathUtils;
023import org.apache.commons.math3.util.Precision;
024import org.apache.commons.math3.exception.DimensionMismatchException;
025import org.apache.commons.math3.exception.ZeroException;
026import org.apache.commons.math3.exception.util.LocalizedFormats;
027
028/**
029 * This class implements <a href="http://mathworld.wolfram.com/Quaternion.html">
030 * quaternions</a> (Hamilton's hypercomplex numbers).
031 * <br/>
032 * Instance of this class are guaranteed to be immutable.
033 *
034 * @since 3.1
035 */
036public final class Quaternion implements Serializable {
037    /** Identity quaternion. */
038    public static final Quaternion IDENTITY = new Quaternion(1, 0, 0, 0);
039    /** Zero quaternion. */
040    public static final Quaternion ZERO = new Quaternion(0, 0, 0, 0);
041    /** i */
042    public static final Quaternion I = new Quaternion(0, 1, 0, 0);
043    /** j */
044    public static final Quaternion J = new Quaternion(0, 0, 1, 0);
045    /** k */
046    public static final Quaternion K = new Quaternion(0, 0, 0, 1);
047
048    /** Serializable version identifier. */
049    private static final long serialVersionUID = 20092012L;
050
051    /** First component (scalar part). */
052    private final double q0;
053    /** Second component (first vector part). */
054    private final double q1;
055    /** Third component (second vector part). */
056    private final double q2;
057    /** Fourth component (third vector part). */
058    private final double q3;
059
060    /**
061     * Builds a quaternion from its components.
062     *
063     * @param a Scalar component.
064     * @param b First vector component.
065     * @param c Second vector component.
066     * @param d Third vector component.
067     */
068    public Quaternion(final double a,
069                      final double b,
070                      final double c,
071                      final double d) {
072        this.q0 = a;
073        this.q1 = b;
074        this.q2 = c;
075        this.q3 = d;
076    }
077
078    /**
079     * Builds a quaternion from scalar and vector parts.
080     *
081     * @param scalar Scalar part of the quaternion.
082     * @param v Components of the vector part of the quaternion.
083     *
084     * @throws DimensionMismatchException if the array length is not 3.
085     */
086    public Quaternion(final double scalar,
087                      final double[] v)
088        throws DimensionMismatchException {
089        if (v.length != 3) {
090            throw new DimensionMismatchException(v.length, 3);
091        }
092        this.q0 = scalar;
093        this.q1 = v[0];
094        this.q2 = v[1];
095        this.q3 = v[2];
096    }
097
098    /**
099     * Builds a pure quaternion from a vector (assuming that the scalar
100     * part is zero).
101     *
102     * @param v Components of the vector part of the pure quaternion.
103     */
104    public Quaternion(final double[] v) {
105        this(0, v);
106    }
107
108    /**
109     * Returns the conjugate quaternion of the instance.
110     *
111     * @return the conjugate quaternion
112     */
113    public Quaternion getConjugate() {
114        return new Quaternion(q0, -q1, -q2, -q3);
115    }
116
117    /**
118     * Returns the Hamilton product of two quaternions.
119     *
120     * @param q1 First quaternion.
121     * @param q2 Second quaternion.
122     * @return the product {@code q1} and {@code q2}, in that order.
123     */
124    public static Quaternion multiply(final Quaternion q1, final Quaternion q2) {
125        // Components of the first quaternion.
126        final double q1a = q1.getQ0();
127        final double q1b = q1.getQ1();
128        final double q1c = q1.getQ2();
129        final double q1d = q1.getQ3();
130
131        // Components of the second quaternion.
132        final double q2a = q2.getQ0();
133        final double q2b = q2.getQ1();
134        final double q2c = q2.getQ2();
135        final double q2d = q2.getQ3();
136
137        // Components of the product.
138        final double w = q1a * q2a - q1b * q2b - q1c * q2c - q1d * q2d;
139        final double x = q1a * q2b + q1b * q2a + q1c * q2d - q1d * q2c;
140        final double y = q1a * q2c - q1b * q2d + q1c * q2a + q1d * q2b;
141        final double z = q1a * q2d + q1b * q2c - q1c * q2b + q1d * q2a;
142
143        return new Quaternion(w, x, y, z);
144    }
145
146    /**
147     * Returns the Hamilton product of the instance by a quaternion.
148     *
149     * @param q Quaternion.
150     * @return the product of this instance with {@code q}, in that order.
151     */
152    public Quaternion multiply(final Quaternion q) {
153        return multiply(this, q);
154    }
155
156    /**
157     * Computes the sum of two quaternions.
158     *
159     * @param q1 Quaternion.
160     * @param q2 Quaternion.
161     * @return the sum of {@code q1} and {@code q2}.
162     */
163    public static Quaternion add(final Quaternion q1,
164                                 final Quaternion q2) {
165        return new Quaternion(q1.getQ0() + q2.getQ0(),
166                              q1.getQ1() + q2.getQ1(),
167                              q1.getQ2() + q2.getQ2(),
168                              q1.getQ3() + q2.getQ3());
169    }
170
171    /**
172     * Computes the sum of the instance and another quaternion.
173     *
174     * @param q Quaternion.
175     * @return the sum of this instance and {@code q}
176     */
177    public Quaternion add(final Quaternion q) {
178        return add(this, q);
179    }
180
181    /**
182     * Subtracts two quaternions.
183     *
184     * @param q1 First Quaternion.
185     * @param q2 Second quaternion.
186     * @return the difference between {@code q1} and {@code q2}.
187     */
188    public static Quaternion subtract(final Quaternion q1,
189                                      final Quaternion q2) {
190        return new Quaternion(q1.getQ0() - q2.getQ0(),
191                              q1.getQ1() - q2.getQ1(),
192                              q1.getQ2() - q2.getQ2(),
193                              q1.getQ3() - q2.getQ3());
194    }
195
196    /**
197     * Subtracts a quaternion from the instance.
198     *
199     * @param q Quaternion.
200     * @return the difference between this instance and {@code q}.
201     */
202    public Quaternion subtract(final Quaternion q) {
203        return subtract(this, q);
204    }
205
206    /**
207     * Computes the dot-product of two quaternions.
208     *
209     * @param q1 Quaternion.
210     * @param q2 Quaternion.
211     * @return the dot product of {@code q1} and {@code q2}.
212     */
213    public static double dotProduct(final Quaternion q1,
214                                    final Quaternion q2) {
215        return q1.getQ0() * q2.getQ0() +
216            q1.getQ1() * q2.getQ1() +
217            q1.getQ2() * q2.getQ2() +
218            q1.getQ3() * q2.getQ3();
219    }
220
221    /**
222     * Computes the dot-product of the instance by a quaternion.
223     *
224     * @param q Quaternion.
225     * @return the dot product of this instance and {@code q}.
226     */
227    public double dotProduct(final Quaternion q) {
228        return dotProduct(this, q);
229    }
230
231    /**
232     * Computes the norm of the quaternion.
233     *
234     * @return the norm.
235     */
236    public double getNorm() {
237        return FastMath.sqrt(q0 * q0 +
238                             q1 * q1 +
239                             q2 * q2 +
240                             q3 * q3);
241    }
242
243    /**
244     * Computes the normalized quaternion (the versor of the instance).
245     * The norm of the quaternion must not be zero.
246     *
247     * @return a normalized quaternion.
248     * @throws ZeroException if the norm of the quaternion is zero.
249     */
250    public Quaternion normalize() {
251        final double norm = getNorm();
252
253        if (norm < Precision.SAFE_MIN) {
254            throw new ZeroException(LocalizedFormats.NORM, norm);
255        }
256
257        return new Quaternion(q0 / norm,
258                              q1 / norm,
259                              q2 / norm,
260                              q3 / norm);
261    }
262
263    /**
264     * {@inheritDoc}
265     */
266    @Override
267    public boolean equals(Object other) {
268        if (this == other) {
269            return true;
270        }
271        if (other instanceof Quaternion) {
272            final Quaternion q = (Quaternion) other;
273            return q0 == q.getQ0() &&
274                q1 == q.getQ1() &&
275                q2 == q.getQ2() &&
276                q3 == q.getQ3();
277        }
278
279        return false;
280    }
281
282    /**
283     * {@inheritDoc}
284     */
285    @Override
286    public int hashCode() {
287        // "Effective Java" (second edition, p. 47).
288        int result = 17;
289        for (double comp : new double[] { q0, q1, q2, q3 }) {
290            final int c = MathUtils.hash(comp);
291            result = 31 * result + c;
292        }
293        return result;
294    }
295
296    /**
297     * Checks whether this instance is equal to another quaternion
298     * within a given tolerance.
299     *
300     * @param q Quaternion with which to compare the current quaternion.
301     * @param eps Tolerance.
302     * @return {@code true} if the each of the components are equal
303     * within the allowed absolute error.
304     */
305    public boolean equals(final Quaternion q,
306                          final double eps) {
307        return Precision.equals(q0, q.getQ0(), eps) &&
308            Precision.equals(q1, q.getQ1(), eps) &&
309            Precision.equals(q2, q.getQ2(), eps) &&
310            Precision.equals(q3, q.getQ3(), eps);
311    }
312
313    /**
314     * Checks whether the instance is a unit quaternion within a given
315     * tolerance.
316     *
317     * @param eps Tolerance (absolute error).
318     * @return {@code true} if the norm is 1 within the given tolerance,
319     * {@code false} otherwise
320     */
321    public boolean isUnitQuaternion(double eps) {
322        return Precision.equals(getNorm(), 1d, eps);
323    }
324
325    /**
326     * Checks whether the instance is a pure quaternion within a given
327     * tolerance.
328     *
329     * @param eps Tolerance (absolute error).
330     * @return {@code true} if the scalar part of the quaternion is zero.
331     */
332    public boolean isPureQuaternion(double eps) {
333        return FastMath.abs(getQ0()) <= eps;
334    }
335
336    /**
337     * Returns the polar form of the quaternion.
338     *
339     * @return the unit quaternion with positive scalar part.
340     */
341    public Quaternion getPositivePolarForm() {
342        if (getQ0() < 0) {
343            final Quaternion unitQ = normalize();
344            // The quaternion of rotation (normalized quaternion) q and -q
345            // are equivalent (i.e. represent the same rotation).
346            return new Quaternion(-unitQ.getQ0(),
347                                  -unitQ.getQ1(),
348                                  -unitQ.getQ2(),
349                                  -unitQ.getQ3());
350        } else {
351            return this.normalize();
352        }
353    }
354
355    /**
356     * Returns the inverse of this instance.
357     * The norm of the quaternion must not be zero.
358     *
359     * @return the inverse.
360     * @throws ZeroException if the norm (squared) of the quaternion is zero.
361     */
362    public Quaternion getInverse() {
363        final double squareNorm = q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3;
364        if (squareNorm < Precision.SAFE_MIN) {
365            throw new ZeroException(LocalizedFormats.NORM, squareNorm);
366        }
367
368        return new Quaternion(q0 / squareNorm,
369                              -q1 / squareNorm,
370                              -q2 / squareNorm,
371                              -q3 / squareNorm);
372    }
373
374    /**
375     * Gets the first component of the quaternion (scalar part).
376     *
377     * @return the scalar part.
378     */
379    public double getQ0() {
380        return q0;
381    }
382
383    /**
384     * Gets the second component of the quaternion (first component
385     * of the vector part).
386     *
387     * @return the first component of the vector part.
388     */
389    public double getQ1() {
390        return q1;
391    }
392
393    /**
394     * Gets the third component of the quaternion (second component
395     * of the vector part).
396     *
397     * @return the second component of the vector part.
398     */
399    public double getQ2() {
400        return q2;
401    }
402
403    /**
404     * Gets the fourth component of the quaternion (third component
405     * of the vector part).
406     *
407     * @return the third component of the vector part.
408     */
409    public double getQ3() {
410        return q3;
411    }
412
413    /**
414     * Gets the scalar part of the quaternion.
415     *
416     * @return the scalar part.
417     * @see #getQ0()
418     */
419    public double getScalarPart() {
420        return getQ0();
421    }
422
423    /**
424     * Gets the three components of the vector part of the quaternion.
425     *
426     * @return the vector part.
427     * @see #getQ1()
428     * @see #getQ2()
429     * @see #getQ3()
430     */
431    public double[] getVectorPart() {
432        return new double[] { getQ1(), getQ2(), getQ3() };
433    }
434
435    /**
436     * Multiplies the instance by a scalar.
437     *
438     * @param alpha Scalar factor.
439     * @return a scaled quaternion.
440     */
441    public Quaternion multiply(final double alpha) {
442        return new Quaternion(alpha * q0,
443                              alpha * q1,
444                              alpha * q2,
445                              alpha * q3);
446    }
447
448    /**
449     * {@inheritDoc}
450     */
451    @Override
452    public String toString() {
453        final String sp = " ";
454        final StringBuilder s = new StringBuilder();
455        s.append("[")
456            .append(q0).append(sp)
457            .append(q1).append(sp)
458            .append(q2).append(sp)
459            .append(q3)
460            .append("]");
461
462        return s.toString();
463    }
464}