001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.math3.dfp; 018 019 020import org.apache.commons.math3.analysis.RealFieldUnivariateFunction; 021import org.apache.commons.math3.analysis.solvers.AllowedSolution; 022import org.apache.commons.math3.analysis.solvers.FieldBracketingNthOrderBrentSolver; 023import org.apache.commons.math3.exception.NoBracketingException; 024import org.apache.commons.math3.exception.NullArgumentException; 025import org.apache.commons.math3.exception.NumberIsTooSmallException; 026import org.apache.commons.math3.util.MathUtils; 027 028/** 029 * This class implements a modification of the <a 030 * href="http://mathworld.wolfram.com/BrentsMethod.html"> Brent algorithm</a>. 031 * <p> 032 * The changes with respect to the original Brent algorithm are: 033 * <ul> 034 * <li>the returned value is chosen in the current interval according 035 * to user specified {@link AllowedSolution},</li> 036 * <li>the maximal order for the invert polynomial root search is 037 * user-specified instead of being invert quadratic only</li> 038 * </ul> 039 * </p> 040 * The given interval must bracket the root. 041 * @deprecated as of 3.6 replaced with {@link FieldBracketingNthOrderBrentSolver} 042 */ 043@Deprecated 044public class BracketingNthOrderBrentSolverDFP extends FieldBracketingNthOrderBrentSolver<Dfp> { 045 046 /** 047 * Construct a solver. 048 * 049 * @param relativeAccuracy Relative accuracy. 050 * @param absoluteAccuracy Absolute accuracy. 051 * @param functionValueAccuracy Function value accuracy. 052 * @param maximalOrder maximal order. 053 * @exception NumberIsTooSmallException if maximal order is lower than 2 054 */ 055 public BracketingNthOrderBrentSolverDFP(final Dfp relativeAccuracy, 056 final Dfp absoluteAccuracy, 057 final Dfp functionValueAccuracy, 058 final int maximalOrder) 059 throws NumberIsTooSmallException { 060 super(relativeAccuracy, absoluteAccuracy, functionValueAccuracy, maximalOrder); 061 } 062 063 /** 064 * Get the absolute accuracy. 065 * @return absolute accuracy 066 */ 067 @Override 068 public Dfp getAbsoluteAccuracy() { 069 return super.getAbsoluteAccuracy(); 070 } 071 072 /** 073 * Get the relative accuracy. 074 * @return relative accuracy 075 */ 076 @Override 077 public Dfp getRelativeAccuracy() { 078 return super.getRelativeAccuracy(); 079 } 080 081 /** 082 * Get the function accuracy. 083 * @return function accuracy 084 */ 085 @Override 086 public Dfp getFunctionValueAccuracy() { 087 return super.getFunctionValueAccuracy(); 088 } 089 090 /** 091 * Solve for a zero in the given interval. 092 * A solver may require that the interval brackets a single zero root. 093 * Solvers that do require bracketing should be able to handle the case 094 * where one of the endpoints is itself a root. 095 * 096 * @param maxEval Maximum number of evaluations. 097 * @param f Function to solve. 098 * @param min Lower bound for the interval. 099 * @param max Upper bound for the interval. 100 * @param allowedSolution The kind of solutions that the root-finding algorithm may 101 * accept as solutions. 102 * @return a value where the function is zero. 103 * @exception NullArgumentException if f is null. 104 * @exception NoBracketingException if root cannot be bracketed 105 */ 106 public Dfp solve(final int maxEval, final UnivariateDfpFunction f, 107 final Dfp min, final Dfp max, final AllowedSolution allowedSolution) 108 throws NullArgumentException, NoBracketingException { 109 return solve(maxEval, f, min, max, min.add(max).divide(2), allowedSolution); 110 } 111 112 /** 113 * Solve for a zero in the given interval, start at {@code startValue}. 114 * A solver may require that the interval brackets a single zero root. 115 * Solvers that do require bracketing should be able to handle the case 116 * where one of the endpoints is itself a root. 117 * 118 * @param maxEval Maximum number of evaluations. 119 * @param f Function to solve. 120 * @param min Lower bound for the interval. 121 * @param max Upper bound for the interval. 122 * @param startValue Start value to use. 123 * @param allowedSolution The kind of solutions that the root-finding algorithm may 124 * accept as solutions. 125 * @return a value where the function is zero. 126 * @exception NullArgumentException if f is null. 127 * @exception NoBracketingException if root cannot be bracketed 128 */ 129 public Dfp solve(final int maxEval, final UnivariateDfpFunction f, 130 final Dfp min, final Dfp max, final Dfp startValue, 131 final AllowedSolution allowedSolution) 132 throws NullArgumentException, NoBracketingException { 133 134 // checks 135 MathUtils.checkNotNull(f); 136 137 // wrap the function 138 RealFieldUnivariateFunction<Dfp> fieldF = new RealFieldUnivariateFunction<Dfp>() { 139 140 /** {@inheritDoc} */ 141 public Dfp value(final Dfp x) { 142 return f.value(x); 143 } 144 }; 145 146 // delegate to general field solver 147 return solve(maxEval, fieldF, min, max, startValue, allowedSolution); 148 149 } 150 151}