001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 018package org.apache.commons.math3.distribution; 019 020import org.apache.commons.math3.exception.NotStrictlyPositiveException; 021import org.apache.commons.math3.exception.NumberIsTooLargeException; 022import org.apache.commons.math3.exception.util.LocalizedFormats; 023import org.apache.commons.math3.random.RandomGenerator; 024import org.apache.commons.math3.random.Well19937c; 025import org.apache.commons.math3.special.Erf; 026import org.apache.commons.math3.util.FastMath; 027 028/** 029 * Implementation of the log-normal (gaussian) distribution. 030 * 031 * <p> 032 * <strong>Parameters:</strong> 033 * {@code X} is log-normally distributed if its natural logarithm {@code log(X)} 034 * is normally distributed. The probability distribution function of {@code X} 035 * is given by (for {@code x > 0}) 036 * </p> 037 * <p> 038 * {@code exp(-0.5 * ((ln(x) - m) / s)^2) / (s * sqrt(2 * pi) * x)} 039 * </p> 040 * <ul> 041 * <li>{@code m} is the <em>scale</em> parameter: this is the mean of the 042 * normally distributed natural logarithm of this distribution,</li> 043 * <li>{@code s} is the <em>shape</em> parameter: this is the standard 044 * deviation of the normally distributed natural logarithm of this 045 * distribution. 046 * </ul> 047 * 048 * @see <a href="http://en.wikipedia.org/wiki/Log-normal_distribution"> 049 * Log-normal distribution (Wikipedia)</a> 050 * @see <a href="http://mathworld.wolfram.com/LogNormalDistribution.html"> 051 * Log Normal distribution (MathWorld)</a> 052 * 053 * @since 3.0 054 */ 055public class LogNormalDistribution extends AbstractRealDistribution { 056 /** Default inverse cumulative probability accuracy. */ 057 public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9; 058 059 /** Serializable version identifier. */ 060 private static final long serialVersionUID = 20120112; 061 062 /** √(2 π) */ 063 private static final double SQRT2PI = FastMath.sqrt(2 * FastMath.PI); 064 065 /** √(2) */ 066 private static final double SQRT2 = FastMath.sqrt(2.0); 067 068 /** The scale parameter of this distribution. */ 069 private final double scale; 070 071 /** The shape parameter of this distribution. */ 072 private final double shape; 073 /** The value of {@code log(shape) + 0.5 * log(2*PI)} stored for faster computation. */ 074 private final double logShapePlusHalfLog2Pi; 075 076 /** Inverse cumulative probability accuracy. */ 077 private final double solverAbsoluteAccuracy; 078 079 /** 080 * Create a log-normal distribution, where the mean and standard deviation 081 * of the {@link NormalDistribution normally distributed} natural 082 * logarithm of the log-normal distribution are equal to zero and one 083 * respectively. In other words, the scale of the returned distribution is 084 * {@code 0}, while its shape is {@code 1}. 085 * <p> 086 * <b>Note:</b> this constructor will implicitly create an instance of 087 * {@link Well19937c} as random generator to be used for sampling only (see 088 * {@link #sample()} and {@link #sample(int)}). In case no sampling is 089 * needed for the created distribution, it is advised to pass {@code null} 090 * as random generator via the appropriate constructors to avoid the 091 * additional initialisation overhead. 092 */ 093 public LogNormalDistribution() { 094 this(0, 1); 095 } 096 097 /** 098 * Create a log-normal distribution using the specified scale and shape. 099 * <p> 100 * <b>Note:</b> this constructor will implicitly create an instance of 101 * {@link Well19937c} as random generator to be used for sampling only (see 102 * {@link #sample()} and {@link #sample(int)}). In case no sampling is 103 * needed for the created distribution, it is advised to pass {@code null} 104 * as random generator via the appropriate constructors to avoid the 105 * additional initialisation overhead. 106 * 107 * @param scale the scale parameter of this distribution 108 * @param shape the shape parameter of this distribution 109 * @throws NotStrictlyPositiveException if {@code shape <= 0}. 110 */ 111 public LogNormalDistribution(double scale, double shape) 112 throws NotStrictlyPositiveException { 113 this(scale, shape, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); 114 } 115 116 /** 117 * Create a log-normal distribution using the specified scale, shape and 118 * inverse cumulative distribution accuracy. 119 * <p> 120 * <b>Note:</b> this constructor will implicitly create an instance of 121 * {@link Well19937c} as random generator to be used for sampling only (see 122 * {@link #sample()} and {@link #sample(int)}). In case no sampling is 123 * needed for the created distribution, it is advised to pass {@code null} 124 * as random generator via the appropriate constructors to avoid the 125 * additional initialisation overhead. 126 * 127 * @param scale the scale parameter of this distribution 128 * @param shape the shape parameter of this distribution 129 * @param inverseCumAccuracy Inverse cumulative probability accuracy. 130 * @throws NotStrictlyPositiveException if {@code shape <= 0}. 131 */ 132 public LogNormalDistribution(double scale, double shape, double inverseCumAccuracy) 133 throws NotStrictlyPositiveException { 134 this(new Well19937c(), scale, shape, inverseCumAccuracy); 135 } 136 137 /** 138 * Creates a log-normal distribution. 139 * 140 * @param rng Random number generator. 141 * @param scale Scale parameter of this distribution. 142 * @param shape Shape parameter of this distribution. 143 * @throws NotStrictlyPositiveException if {@code shape <= 0}. 144 * @since 3.3 145 */ 146 public LogNormalDistribution(RandomGenerator rng, double scale, double shape) 147 throws NotStrictlyPositiveException { 148 this(rng, scale, shape, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); 149 } 150 151 /** 152 * Creates a log-normal distribution. 153 * 154 * @param rng Random number generator. 155 * @param scale Scale parameter of this distribution. 156 * @param shape Shape parameter of this distribution. 157 * @param inverseCumAccuracy Inverse cumulative probability accuracy. 158 * @throws NotStrictlyPositiveException if {@code shape <= 0}. 159 * @since 3.1 160 */ 161 public LogNormalDistribution(RandomGenerator rng, 162 double scale, 163 double shape, 164 double inverseCumAccuracy) 165 throws NotStrictlyPositiveException { 166 super(rng); 167 168 if (shape <= 0) { 169 throw new NotStrictlyPositiveException(LocalizedFormats.SHAPE, shape); 170 } 171 172 this.scale = scale; 173 this.shape = shape; 174 this.logShapePlusHalfLog2Pi = FastMath.log(shape) + 0.5 * FastMath.log(2 * FastMath.PI); 175 this.solverAbsoluteAccuracy = inverseCumAccuracy; 176 } 177 178 /** 179 * Returns the scale parameter of this distribution. 180 * 181 * @return the scale parameter 182 */ 183 public double getScale() { 184 return scale; 185 } 186 187 /** 188 * Returns the shape parameter of this distribution. 189 * 190 * @return the shape parameter 191 */ 192 public double getShape() { 193 return shape; 194 } 195 196 /** 197 * {@inheritDoc} 198 * 199 * For scale {@code m}, and shape {@code s} of this distribution, the PDF 200 * is given by 201 * <ul> 202 * <li>{@code 0} if {@code x <= 0},</li> 203 * <li>{@code exp(-0.5 * ((ln(x) - m) / s)^2) / (s * sqrt(2 * pi) * x)} 204 * otherwise.</li> 205 * </ul> 206 */ 207 public double density(double x) { 208 if (x <= 0) { 209 return 0; 210 } 211 final double x0 = FastMath.log(x) - scale; 212 final double x1 = x0 / shape; 213 return FastMath.exp(-0.5 * x1 * x1) / (shape * SQRT2PI * x); 214 } 215 216 /** {@inheritDoc} 217 * 218 * See documentation of {@link #density(double)} for computation details. 219 */ 220 @Override 221 public double logDensity(double x) { 222 if (x <= 0) { 223 return Double.NEGATIVE_INFINITY; 224 } 225 final double logX = FastMath.log(x); 226 final double x0 = logX - scale; 227 final double x1 = x0 / shape; 228 return -0.5 * x1 * x1 - (logShapePlusHalfLog2Pi + logX); 229 } 230 231 /** 232 * {@inheritDoc} 233 * 234 * For scale {@code m}, and shape {@code s} of this distribution, the CDF 235 * is given by 236 * <ul> 237 * <li>{@code 0} if {@code x <= 0},</li> 238 * <li>{@code 0} if {@code ln(x) - m < 0} and {@code m - ln(x) > 40 * s}, as 239 * in these cases the actual value is within {@code Double.MIN_VALUE} of 0, 240 * <li>{@code 1} if {@code ln(x) - m >= 0} and {@code ln(x) - m > 40 * s}, 241 * as in these cases the actual value is within {@code Double.MIN_VALUE} of 242 * 1,</li> 243 * <li>{@code 0.5 + 0.5 * erf((ln(x) - m) / (s * sqrt(2))} otherwise.</li> 244 * </ul> 245 */ 246 public double cumulativeProbability(double x) { 247 if (x <= 0) { 248 return 0; 249 } 250 final double dev = FastMath.log(x) - scale; 251 if (FastMath.abs(dev) > 40 * shape) { 252 return dev < 0 ? 0.0d : 1.0d; 253 } 254 return 0.5 + 0.5 * Erf.erf(dev / (shape * SQRT2)); 255 } 256 257 /** 258 * {@inheritDoc} 259 * 260 * @deprecated See {@link RealDistribution#cumulativeProbability(double,double)} 261 */ 262 @Override@Deprecated 263 public double cumulativeProbability(double x0, double x1) 264 throws NumberIsTooLargeException { 265 return probability(x0, x1); 266 } 267 268 /** {@inheritDoc} */ 269 @Override 270 public double probability(double x0, 271 double x1) 272 throws NumberIsTooLargeException { 273 if (x0 > x1) { 274 throw new NumberIsTooLargeException(LocalizedFormats.LOWER_ENDPOINT_ABOVE_UPPER_ENDPOINT, 275 x0, x1, true); 276 } 277 if (x0 <= 0 || x1 <= 0) { 278 return super.probability(x0, x1); 279 } 280 final double denom = shape * SQRT2; 281 final double v0 = (FastMath.log(x0) - scale) / denom; 282 final double v1 = (FastMath.log(x1) - scale) / denom; 283 return 0.5 * Erf.erf(v0, v1); 284 } 285 286 /** {@inheritDoc} */ 287 @Override 288 protected double getSolverAbsoluteAccuracy() { 289 return solverAbsoluteAccuracy; 290 } 291 292 /** 293 * {@inheritDoc} 294 * 295 * For scale {@code m} and shape {@code s}, the mean is 296 * {@code exp(m + s^2 / 2)}. 297 */ 298 public double getNumericalMean() { 299 double s = shape; 300 return FastMath.exp(scale + (s * s / 2)); 301 } 302 303 /** 304 * {@inheritDoc} 305 * 306 * For scale {@code m} and shape {@code s}, the variance is 307 * {@code (exp(s^2) - 1) * exp(2 * m + s^2)}. 308 */ 309 public double getNumericalVariance() { 310 final double s = shape; 311 final double ss = s * s; 312 return (FastMath.expm1(ss)) * FastMath.exp(2 * scale + ss); 313 } 314 315 /** 316 * {@inheritDoc} 317 * 318 * The lower bound of the support is always 0 no matter the parameters. 319 * 320 * @return lower bound of the support (always 0) 321 */ 322 public double getSupportLowerBound() { 323 return 0; 324 } 325 326 /** 327 * {@inheritDoc} 328 * 329 * The upper bound of the support is always positive infinity 330 * no matter the parameters. 331 * 332 * @return upper bound of the support (always 333 * {@code Double.POSITIVE_INFINITY}) 334 */ 335 public double getSupportUpperBound() { 336 return Double.POSITIVE_INFINITY; 337 } 338 339 /** {@inheritDoc} */ 340 public boolean isSupportLowerBoundInclusive() { 341 return true; 342 } 343 344 /** {@inheritDoc} */ 345 public boolean isSupportUpperBoundInclusive() { 346 return false; 347 } 348 349 /** 350 * {@inheritDoc} 351 * 352 * The support of this distribution is connected. 353 * 354 * @return {@code true} 355 */ 356 public boolean isSupportConnected() { 357 return true; 358 } 359 360 /** {@inheritDoc} */ 361 @Override 362 public double sample() { 363 final double n = random.nextGaussian(); 364 return FastMath.exp(scale + shape * n); 365 } 366}