001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.math3.distribution; 018 019import org.apache.commons.math3.exception.NumberIsTooLargeException; 020import org.apache.commons.math3.exception.OutOfRangeException; 021 022/** 023 * Base interface for distributions on the reals. 024 * 025 * @since 3.0 026 */ 027public interface RealDistribution { 028 /** 029 * For a random variable {@code X} whose values are distributed according 030 * to this distribution, this method returns {@code P(X = x)}. In other 031 * words, this method represents the probability mass function (PMF) 032 * for the distribution. 033 * 034 * @param x the point at which the PMF is evaluated 035 * @return the value of the probability mass function at point {@code x} 036 */ 037 double probability(double x); 038 039 /** 040 * Returns the probability density function (PDF) of this distribution 041 * evaluated at the specified point {@code x}. In general, the PDF is 042 * the derivative of the {@link #cumulativeProbability(double) CDF}. 043 * If the derivative does not exist at {@code x}, then an appropriate 044 * replacement should be returned, e.g. {@code Double.POSITIVE_INFINITY}, 045 * {@code Double.NaN}, or the limit inferior or limit superior of the 046 * difference quotient. 047 * 048 * @param x the point at which the PDF is evaluated 049 * @return the value of the probability density function at point {@code x} 050 */ 051 double density(double x); 052 053 /** 054 * For a random variable {@code X} whose values are distributed according 055 * to this distribution, this method returns {@code P(X <= x)}. In other 056 * words, this method represents the (cumulative) distribution function 057 * (CDF) for this distribution. 058 * 059 * @param x the point at which the CDF is evaluated 060 * @return the probability that a random variable with this 061 * distribution takes a value less than or equal to {@code x} 062 */ 063 double cumulativeProbability(double x); 064 065 /** 066 * For a random variable {@code X} whose values are distributed according 067 * to this distribution, this method returns {@code P(x0 < X <= x1)}. 068 * 069 * @param x0 the exclusive lower bound 070 * @param x1 the inclusive upper bound 071 * @return the probability that a random variable with this distribution 072 * takes a value between {@code x0} and {@code x1}, 073 * excluding the lower and including the upper endpoint 074 * @throws NumberIsTooLargeException if {@code x0 > x1} 075 * 076 * @deprecated As of 3.1. In 4.0, this method will be renamed 077 * {@code probability(double x0, double x1)}. 078 */ 079 @Deprecated 080 double cumulativeProbability(double x0, double x1) throws NumberIsTooLargeException; 081 082 /** 083 * Computes the quantile function of this distribution. For a random 084 * variable {@code X} distributed according to this distribution, the 085 * returned value is 086 * <ul> 087 * <li><code>inf{x in R | P(X<=x) >= p}</code> for {@code 0 < p <= 1},</li> 088 * <li><code>inf{x in R | P(X<=x) > 0}</code> for {@code p = 0}.</li> 089 * </ul> 090 * 091 * @param p the cumulative probability 092 * @return the smallest {@code p}-quantile of this distribution 093 * (largest 0-quantile for {@code p = 0}) 094 * @throws OutOfRangeException if {@code p < 0} or {@code p > 1} 095 */ 096 double inverseCumulativeProbability(double p) throws OutOfRangeException; 097 098 /** 099 * Use this method to get the numerical value of the mean of this 100 * distribution. 101 * 102 * @return the mean or {@code Double.NaN} if it is not defined 103 */ 104 double getNumericalMean(); 105 106 /** 107 * Use this method to get the numerical value of the variance of this 108 * distribution. 109 * 110 * @return the variance (possibly {@code Double.POSITIVE_INFINITY} as 111 * for certain cases in {@link TDistribution}) or {@code Double.NaN} if it 112 * is not defined 113 */ 114 double getNumericalVariance(); 115 116 /** 117 * Access the lower bound of the support. This method must return the same 118 * value as {@code inverseCumulativeProbability(0)}. In other words, this 119 * method must return 120 * <p><code>inf {x in R | P(X <= x) > 0}</code>.</p> 121 * 122 * @return lower bound of the support (might be 123 * {@code Double.NEGATIVE_INFINITY}) 124 */ 125 double getSupportLowerBound(); 126 127 /** 128 * Access the upper bound of the support. This method must return the same 129 * value as {@code inverseCumulativeProbability(1)}. In other words, this 130 * method must return 131 * <p><code>inf {x in R | P(X <= x) = 1}</code>.</p> 132 * 133 * @return upper bound of the support (might be 134 * {@code Double.POSITIVE_INFINITY}) 135 */ 136 double getSupportUpperBound(); 137 138 /** 139 * Whether or not the lower bound of support is in the domain of the density 140 * function. Returns true iff {@code getSupporLowerBound()} is finite and 141 * {@code density(getSupportLowerBound())} returns a non-NaN, non-infinite 142 * value. 143 * 144 * @return true if the lower bound of support is finite and the density 145 * function returns a non-NaN, non-infinite value there 146 * @deprecated to be removed in 4.0 147 */ 148 @Deprecated 149 boolean isSupportLowerBoundInclusive(); 150 151 /** 152 * Whether or not the upper bound of support is in the domain of the density 153 * function. Returns true iff {@code getSupportUpperBound()} is finite and 154 * {@code density(getSupportUpperBound())} returns a non-NaN, non-infinite 155 * value. 156 * 157 * @return true if the upper bound of support is finite and the density 158 * function returns a non-NaN, non-infinite value there 159 * @deprecated to be removed in 4.0 160 */ 161 @Deprecated 162 boolean isSupportUpperBoundInclusive(); 163 164 /** 165 * Use this method to get information about whether the support is connected, 166 * i.e. whether all values between the lower and upper bound of the support 167 * are included in the support. 168 * 169 * @return whether the support is connected or not 170 */ 171 boolean isSupportConnected(); 172 173 /** 174 * Reseed the random generator used to generate samples. 175 * 176 * @param seed the new seed 177 */ 178 void reseedRandomGenerator(long seed); 179 180 /** 181 * Generate a random value sampled from this distribution. 182 * 183 * @return a random value. 184 */ 185 double sample(); 186 187 /** 188 * Generate a random sample from the distribution. 189 * 190 * @param sampleSize the number of random values to generate 191 * @return an array representing the random sample 192 * @throws org.apache.commons.math3.exception.NotStrictlyPositiveException 193 * if {@code sampleSize} is not positive 194 */ 195 double[] sample(int sampleSize); 196}