001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.math3.fitting; 018 019import java.util.Collection; 020 021import org.apache.commons.math3.analysis.MultivariateVectorFunction; 022import org.apache.commons.math3.analysis.MultivariateMatrixFunction; 023import org.apache.commons.math3.analysis.ParametricUnivariateFunction; 024import org.apache.commons.math3.fitting.leastsquares.LeastSquaresOptimizer; 025import org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem; 026import org.apache.commons.math3.fitting.leastsquares.LevenbergMarquardtOptimizer; 027 028/** 029 * Base class that contains common code for fitting parametric univariate 030 * real functions <code>y = f(p<sub>i</sub>;x)</code>, where {@code x} is 031 * the independent variable and the <code>p<sub>i</sub></code> are the 032 * <em>parameters</em>. 033 * <br/> 034 * A fitter will find the optimal values of the parameters by 035 * <em>fitting</em> the curve so it remains very close to a set of 036 * {@code N} observed points <code>(x<sub>k</sub>, y<sub>k</sub>)</code>, 037 * {@code 0 <= k < N}. 038 * <br/> 039 * An algorithm usually performs the fit by finding the parameter 040 * values that minimizes the objective function 041 * <pre><code> 042 * ∑y<sub>k</sub> - f(x<sub>k</sub>)<sup>2</sup>, 043 * </code></pre> 044 * which is actually a least-squares problem. 045 * This class contains boilerplate code for calling the 046 * {@link #fit(Collection)} method for obtaining the parameters. 047 * The problem setup, such as the choice of optimization algorithm 048 * for fitting a specific function is delegated to subclasses. 049 * 050 * @since 3.3 051 */ 052public abstract class AbstractCurveFitter { 053 /** 054 * Fits a curve. 055 * This method computes the coefficients of the curve that best 056 * fit the sample of observed points. 057 * 058 * @param points Observations. 059 * @return the fitted parameters. 060 */ 061 public double[] fit(Collection<WeightedObservedPoint> points) { 062 // Perform the fit. 063 return getOptimizer().optimize(getProblem(points)).getPoint().toArray(); 064 } 065 066 /** 067 * Creates an optimizer set up to fit the appropriate curve. 068 * <p> 069 * The default implementation uses a {@link LevenbergMarquardtOptimizer 070 * Levenberg-Marquardt} optimizer. 071 * </p> 072 * @return the optimizer to use for fitting the curve to the 073 * given {@code points}. 074 */ 075 protected LeastSquaresOptimizer getOptimizer() { 076 return new LevenbergMarquardtOptimizer(); 077 } 078 079 /** 080 * Creates a least squares problem corresponding to the appropriate curve. 081 * 082 * @param points Sample points. 083 * @return the least squares problem to use for fitting the curve to the 084 * given {@code points}. 085 */ 086 protected abstract LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> points); 087 088 /** 089 * Vector function for computing function theoretical values. 090 */ 091 protected static class TheoreticalValuesFunction { 092 /** Function to fit. */ 093 private final ParametricUnivariateFunction f; 094 /** Observations. */ 095 private final double[] points; 096 097 /** 098 * @param f function to fit. 099 * @param observations Observations. 100 */ 101 public TheoreticalValuesFunction(final ParametricUnivariateFunction f, 102 final Collection<WeightedObservedPoint> observations) { 103 this.f = f; 104 105 final int len = observations.size(); 106 this.points = new double[len]; 107 int i = 0; 108 for (WeightedObservedPoint obs : observations) { 109 this.points[i++] = obs.getX(); 110 } 111 } 112 113 /** 114 * @return the model function values. 115 */ 116 public MultivariateVectorFunction getModelFunction() { 117 return new MultivariateVectorFunction() { 118 /** {@inheritDoc} */ 119 public double[] value(double[] p) { 120 final int len = points.length; 121 final double[] values = new double[len]; 122 for (int i = 0; i < len; i++) { 123 values[i] = f.value(points[i], p); 124 } 125 126 return values; 127 } 128 }; 129 } 130 131 /** 132 * @return the model function Jacobian. 133 */ 134 public MultivariateMatrixFunction getModelFunctionJacobian() { 135 return new MultivariateMatrixFunction() { 136 /** {@inheritDoc} */ 137 public double[][] value(double[] p) { 138 final int len = points.length; 139 final double[][] jacobian = new double[len][]; 140 for (int i = 0; i < len; i++) { 141 jacobian[i] = f.gradient(points[i], p); 142 } 143 return jacobian; 144 } 145 }; 146 } 147 } 148}