001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.math3.fitting.leastsquares; 018 019import org.apache.commons.math3.exception.MathIllegalStateException; 020import org.apache.commons.math3.exception.util.LocalizedFormats; 021import org.apache.commons.math3.analysis.MultivariateMatrixFunction; 022import org.apache.commons.math3.analysis.MultivariateVectorFunction; 023import org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem.Evaluation; 024import org.apache.commons.math3.linear.Array2DRowRealMatrix; 025import org.apache.commons.math3.linear.ArrayRealVector; 026import org.apache.commons.math3.linear.DiagonalMatrix; 027import org.apache.commons.math3.linear.EigenDecomposition; 028import org.apache.commons.math3.linear.RealMatrix; 029import org.apache.commons.math3.linear.RealVector; 030import org.apache.commons.math3.optim.AbstractOptimizationProblem; 031import org.apache.commons.math3.optim.ConvergenceChecker; 032import org.apache.commons.math3.optim.PointVectorValuePair; 033import org.apache.commons.math3.util.FastMath; 034import org.apache.commons.math3.util.Incrementor; 035import org.apache.commons.math3.util.Pair; 036 037/** 038 * A Factory for creating {@link LeastSquaresProblem}s. 039 * 040 * @since 3.3 041 */ 042public class LeastSquaresFactory { 043 044 /** Prevent instantiation. */ 045 private LeastSquaresFactory() {} 046 047 /** 048 * Create a {@link org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem} 049 * from the given elements. There will be no weights applied (unit weights). 050 * 051 * @param model the model function. Produces the computed values. 052 * @param observed the observed (target) values 053 * @param start the initial guess. 054 * @param weight the weight matrix 055 * @param checker convergence checker 056 * @param maxEvaluations the maximum number of times to evaluate the model 057 * @param maxIterations the maximum number to times to iterate in the algorithm 058 * @param lazyEvaluation Whether the call to {@link Evaluation#evaluate(RealVector)} 059 * will defer the evaluation until access to the value is requested. 060 * @param paramValidator Model parameters validator. 061 * @return the specified General Least Squares problem. 062 * 063 * @since 3.4 064 */ 065 public static LeastSquaresProblem create(final MultivariateJacobianFunction model, 066 final RealVector observed, 067 final RealVector start, 068 final RealMatrix weight, 069 final ConvergenceChecker<Evaluation> checker, 070 final int maxEvaluations, 071 final int maxIterations, 072 final boolean lazyEvaluation, 073 final ParameterValidator paramValidator) { 074 final LeastSquaresProblem p = new LocalLeastSquaresProblem(model, 075 observed, 076 start, 077 checker, 078 maxEvaluations, 079 maxIterations, 080 lazyEvaluation, 081 paramValidator); 082 if (weight != null) { 083 return weightMatrix(p, weight); 084 } else { 085 return p; 086 } 087 } 088 089 /** 090 * Create a {@link org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem} 091 * from the given elements. There will be no weights applied (unit weights). 092 * 093 * @param model the model function. Produces the computed values. 094 * @param observed the observed (target) values 095 * @param start the initial guess. 096 * @param checker convergence checker 097 * @param maxEvaluations the maximum number of times to evaluate the model 098 * @param maxIterations the maximum number to times to iterate in the algorithm 099 * @return the specified General Least Squares problem. 100 */ 101 public static LeastSquaresProblem create(final MultivariateJacobianFunction model, 102 final RealVector observed, 103 final RealVector start, 104 final ConvergenceChecker<Evaluation> checker, 105 final int maxEvaluations, 106 final int maxIterations) { 107 return create(model, 108 observed, 109 start, 110 null, 111 checker, 112 maxEvaluations, 113 maxIterations, 114 false, 115 null); 116 } 117 118 /** 119 * Create a {@link org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem} 120 * from the given elements. 121 * 122 * @param model the model function. Produces the computed values. 123 * @param observed the observed (target) values 124 * @param start the initial guess. 125 * @param weight the weight matrix 126 * @param checker convergence checker 127 * @param maxEvaluations the maximum number of times to evaluate the model 128 * @param maxIterations the maximum number to times to iterate in the algorithm 129 * @return the specified General Least Squares problem. 130 */ 131 public static LeastSquaresProblem create(final MultivariateJacobianFunction model, 132 final RealVector observed, 133 final RealVector start, 134 final RealMatrix weight, 135 final ConvergenceChecker<Evaluation> checker, 136 final int maxEvaluations, 137 final int maxIterations) { 138 return weightMatrix(create(model, 139 observed, 140 start, 141 checker, 142 maxEvaluations, 143 maxIterations), 144 weight); 145 } 146 147 /** 148 * Create a {@link org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem} 149 * from the given elements. 150 * <p> 151 * This factory method is provided for continuity with previous interfaces. Newer 152 * applications should use {@link #create(MultivariateJacobianFunction, RealVector, 153 * RealVector, ConvergenceChecker, int, int)}, or {@link #create(MultivariateJacobianFunction, 154 * RealVector, RealVector, RealMatrix, ConvergenceChecker, int, int)}. 155 * 156 * @param model the model function. Produces the computed values. 157 * @param jacobian the jacobian of the model with respect to the parameters 158 * @param observed the observed (target) values 159 * @param start the initial guess. 160 * @param weight the weight matrix 161 * @param checker convergence checker 162 * @param maxEvaluations the maximum number of times to evaluate the model 163 * @param maxIterations the maximum number to times to iterate in the algorithm 164 * @return the specified General Least Squares problem. 165 */ 166 public static LeastSquaresProblem create(final MultivariateVectorFunction model, 167 final MultivariateMatrixFunction jacobian, 168 final double[] observed, 169 final double[] start, 170 final RealMatrix weight, 171 final ConvergenceChecker<Evaluation> checker, 172 final int maxEvaluations, 173 final int maxIterations) { 174 return create(model(model, jacobian), 175 new ArrayRealVector(observed, false), 176 new ArrayRealVector(start, false), 177 weight, 178 checker, 179 maxEvaluations, 180 maxIterations); 181 } 182 183 /** 184 * Apply a dense weight matrix to the {@link LeastSquaresProblem}. 185 * 186 * @param problem the unweighted problem 187 * @param weights the matrix of weights 188 * @return a new {@link LeastSquaresProblem} with the weights applied. The original 189 * {@code problem} is not modified. 190 */ 191 public static LeastSquaresProblem weightMatrix(final LeastSquaresProblem problem, 192 final RealMatrix weights) { 193 final RealMatrix weightSquareRoot = squareRoot(weights); 194 return new LeastSquaresAdapter(problem) { 195 /** {@inheritDoc} */ 196 @Override 197 public Evaluation evaluate(final RealVector point) { 198 return new DenseWeightedEvaluation(super.evaluate(point), weightSquareRoot); 199 } 200 }; 201 } 202 203 /** 204 * Apply a diagonal weight matrix to the {@link LeastSquaresProblem}. 205 * 206 * @param problem the unweighted problem 207 * @param weights the diagonal of the weight matrix 208 * @return a new {@link LeastSquaresProblem} with the weights applied. The original 209 * {@code problem} is not modified. 210 */ 211 public static LeastSquaresProblem weightDiagonal(final LeastSquaresProblem problem, 212 final RealVector weights) { 213 // TODO more efficient implementation 214 return weightMatrix(problem, new DiagonalMatrix(weights.toArray())); 215 } 216 217 /** 218 * Count the evaluations of a particular problem. The {@code counter} will be 219 * incremented every time {@link LeastSquaresProblem#evaluate(RealVector)} is called on 220 * the <em>returned</em> problem. 221 * 222 * @param problem the problem to track. 223 * @param counter the counter to increment. 224 * @return a least squares problem that tracks evaluations 225 */ 226 public static LeastSquaresProblem countEvaluations(final LeastSquaresProblem problem, 227 final Incrementor counter) { 228 return new LeastSquaresAdapter(problem) { 229 230 /** {@inheritDoc} */ 231 @Override 232 public Evaluation evaluate(final RealVector point) { 233 counter.incrementCount(); 234 return super.evaluate(point); 235 } 236 237 // Delegate the rest. 238 }; 239 } 240 241 /** 242 * View a convergence checker specified for a {@link PointVectorValuePair} as one 243 * specified for an {@link Evaluation}. 244 * 245 * @param checker the convergence checker to adapt. 246 * @return a convergence checker that delegates to {@code checker}. 247 */ 248 public static ConvergenceChecker<Evaluation> evaluationChecker(final ConvergenceChecker<PointVectorValuePair> checker) { 249 return new ConvergenceChecker<Evaluation>() { 250 /** {@inheritDoc} */ 251 public boolean converged(final int iteration, 252 final Evaluation previous, 253 final Evaluation current) { 254 return checker.converged( 255 iteration, 256 new PointVectorValuePair( 257 previous.getPoint().toArray(), 258 previous.getResiduals().toArray(), 259 false), 260 new PointVectorValuePair( 261 current.getPoint().toArray(), 262 current.getResiduals().toArray(), 263 false) 264 ); 265 } 266 }; 267 } 268 269 /** 270 * Computes the square-root of the weight matrix. 271 * 272 * @param m Symmetric, positive-definite (weight) matrix. 273 * @return the square-root of the weight matrix. 274 */ 275 private static RealMatrix squareRoot(final RealMatrix m) { 276 if (m instanceof DiagonalMatrix) { 277 final int dim = m.getRowDimension(); 278 final RealMatrix sqrtM = new DiagonalMatrix(dim); 279 for (int i = 0; i < dim; i++) { 280 sqrtM.setEntry(i, i, FastMath.sqrt(m.getEntry(i, i))); 281 } 282 return sqrtM; 283 } else { 284 final EigenDecomposition dec = new EigenDecomposition(m); 285 return dec.getSquareRoot(); 286 } 287 } 288 289 /** 290 * Combine a {@link MultivariateVectorFunction} with a {@link 291 * MultivariateMatrixFunction} to produce a {@link MultivariateJacobianFunction}. 292 * 293 * @param value the vector value function 294 * @param jacobian the Jacobian function 295 * @return a function that computes both at the same time 296 */ 297 public static MultivariateJacobianFunction model(final MultivariateVectorFunction value, 298 final MultivariateMatrixFunction jacobian) { 299 return new LocalValueAndJacobianFunction(value, jacobian); 300 } 301 302 /** 303 * Combine a {@link MultivariateVectorFunction} with a {@link 304 * MultivariateMatrixFunction} to produce a {@link MultivariateJacobianFunction}. 305 * 306 * @param value the vector value function 307 * @param jacobian the Jacobian function 308 * @return a function that computes both at the same time 309 */ 310 private static class LocalValueAndJacobianFunction 311 implements ValueAndJacobianFunction { 312 /** Model. */ 313 private final MultivariateVectorFunction value; 314 /** Model's Jacobian. */ 315 private final MultivariateMatrixFunction jacobian; 316 317 /** 318 * @param value Model function. 319 * @param jacobian Model's Jacobian function. 320 */ 321 LocalValueAndJacobianFunction(final MultivariateVectorFunction value, 322 final MultivariateMatrixFunction jacobian) { 323 this.value = value; 324 this.jacobian = jacobian; 325 } 326 327 /** {@inheritDoc} */ 328 public Pair<RealVector, RealMatrix> value(final RealVector point) { 329 //TODO get array from RealVector without copying? 330 final double[] p = point.toArray(); 331 332 // Evaluate. 333 return new Pair<RealVector, RealMatrix>(computeValue(p), 334 computeJacobian(p)); 335 } 336 337 /** {@inheritDoc} */ 338 public RealVector computeValue(final double[] params) { 339 return new ArrayRealVector(value.value(params), false); 340 } 341 342 /** {@inheritDoc} */ 343 public RealMatrix computeJacobian(final double[] params) { 344 return new Array2DRowRealMatrix(jacobian.value(params), false); 345 } 346 } 347 348 349 /** 350 * A private, "field" immutable (not "real" immutable) implementation of {@link 351 * LeastSquaresProblem}. 352 * @since 3.3 353 */ 354 private static class LocalLeastSquaresProblem 355 extends AbstractOptimizationProblem<Evaluation> 356 implements LeastSquaresProblem { 357 358 /** Target values for the model function at optimum. */ 359 private final RealVector target; 360 /** Model function. */ 361 private final MultivariateJacobianFunction model; 362 /** Initial guess. */ 363 private final RealVector start; 364 /** Whether to use lazy evaluation. */ 365 private final boolean lazyEvaluation; 366 /** Model parameters validator. */ 367 private final ParameterValidator paramValidator; 368 369 /** 370 * Create a {@link LeastSquaresProblem} from the given data. 371 * 372 * @param model the model function 373 * @param target the observed data 374 * @param start the initial guess 375 * @param checker the convergence checker 376 * @param maxEvaluations the allowed evaluations 377 * @param maxIterations the allowed iterations 378 * @param lazyEvaluation Whether the call to {@link Evaluation#evaluate(RealVector)} 379 * will defer the evaluation until access to the value is requested. 380 * @param paramValidator Model parameters validator. 381 */ 382 LocalLeastSquaresProblem(final MultivariateJacobianFunction model, 383 final RealVector target, 384 final RealVector start, 385 final ConvergenceChecker<Evaluation> checker, 386 final int maxEvaluations, 387 final int maxIterations, 388 final boolean lazyEvaluation, 389 final ParameterValidator paramValidator) { 390 super(maxEvaluations, maxIterations, checker); 391 this.target = target; 392 this.model = model; 393 this.start = start; 394 this.lazyEvaluation = lazyEvaluation; 395 this.paramValidator = paramValidator; 396 397 if (lazyEvaluation && 398 !(model instanceof ValueAndJacobianFunction)) { 399 // Lazy evaluation requires that value and Jacobian 400 // can be computed separately. 401 throw new MathIllegalStateException(LocalizedFormats.INVALID_IMPLEMENTATION, 402 model.getClass().getName()); 403 } 404 } 405 406 /** {@inheritDoc} */ 407 public int getObservationSize() { 408 return target.getDimension(); 409 } 410 411 /** {@inheritDoc} */ 412 public int getParameterSize() { 413 return start.getDimension(); 414 } 415 416 /** {@inheritDoc} */ 417 public RealVector getStart() { 418 return start == null ? null : start.copy(); 419 } 420 421 /** {@inheritDoc} */ 422 public Evaluation evaluate(final RealVector point) { 423 // Copy so optimizer can change point without changing our instance. 424 final RealVector p = paramValidator == null ? 425 point.copy() : 426 paramValidator.validate(point.copy()); 427 428 if (lazyEvaluation) { 429 return new LazyUnweightedEvaluation((ValueAndJacobianFunction) model, 430 target, 431 p); 432 } else { 433 // Evaluate value and jacobian in one function call. 434 final Pair<RealVector, RealMatrix> value = model.value(p); 435 return new UnweightedEvaluation(value.getFirst(), 436 value.getSecond(), 437 target, 438 p); 439 } 440 } 441 442 /** 443 * Container with the model evaluation at a particular point. 444 */ 445 private static class UnweightedEvaluation extends AbstractEvaluation { 446 /** Point of evaluation. */ 447 private final RealVector point; 448 /** Derivative at point. */ 449 private final RealMatrix jacobian; 450 /** Computed residuals. */ 451 private final RealVector residuals; 452 453 /** 454 * Create an {@link Evaluation} with no weights. 455 * 456 * @param values the computed function values 457 * @param jacobian the computed function Jacobian 458 * @param target the observed values 459 * @param point the abscissa 460 */ 461 private UnweightedEvaluation(final RealVector values, 462 final RealMatrix jacobian, 463 final RealVector target, 464 final RealVector point) { 465 super(target.getDimension()); 466 this.jacobian = jacobian; 467 this.point = point; 468 this.residuals = target.subtract(values); 469 } 470 471 /** {@inheritDoc} */ 472 public RealMatrix getJacobian() { 473 return jacobian; 474 } 475 476 /** {@inheritDoc} */ 477 public RealVector getPoint() { 478 return point; 479 } 480 481 /** {@inheritDoc} */ 482 public RealVector getResiduals() { 483 return residuals; 484 } 485 } 486 487 /** 488 * Container with the model <em>lazy</em> evaluation at a particular point. 489 */ 490 private static class LazyUnweightedEvaluation extends AbstractEvaluation { 491 /** Point of evaluation. */ 492 private final RealVector point; 493 /** Model and Jacobian functions. */ 494 private final ValueAndJacobianFunction model; 495 /** Target values for the model function at optimum. */ 496 private final RealVector target; 497 498 /** 499 * Create an {@link Evaluation} with no weights. 500 * 501 * @param model the model function 502 * @param target the observed values 503 * @param point the abscissa 504 */ 505 private LazyUnweightedEvaluation(final ValueAndJacobianFunction model, 506 final RealVector target, 507 final RealVector point) { 508 super(target.getDimension()); 509 // Safe to cast as long as we control usage of this class. 510 this.model = model; 511 this.point = point; 512 this.target = target; 513 } 514 515 /** {@inheritDoc} */ 516 public RealMatrix getJacobian() { 517 return model.computeJacobian(point.toArray()); 518 } 519 520 /** {@inheritDoc} */ 521 public RealVector getPoint() { 522 return point; 523 } 524 525 /** {@inheritDoc} */ 526 public RealVector getResiduals() { 527 return target.subtract(model.computeValue(point.toArray())); 528 } 529 } 530 } 531} 532