001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.math3.geometry.euclidean.twod; 018 019import java.util.ArrayList; 020import java.util.List; 021 022import org.apache.commons.math3.geometry.Point; 023import org.apache.commons.math3.geometry.euclidean.oned.Euclidean1D; 024import org.apache.commons.math3.geometry.euclidean.oned.Interval; 025import org.apache.commons.math3.geometry.euclidean.oned.IntervalsSet; 026import org.apache.commons.math3.geometry.euclidean.oned.OrientedPoint; 027import org.apache.commons.math3.geometry.euclidean.oned.Vector1D; 028import org.apache.commons.math3.geometry.partitioning.AbstractSubHyperplane; 029import org.apache.commons.math3.geometry.partitioning.BSPTree; 030import org.apache.commons.math3.geometry.partitioning.Hyperplane; 031import org.apache.commons.math3.geometry.partitioning.Region; 032import org.apache.commons.math3.geometry.partitioning.Region.Location; 033import org.apache.commons.math3.geometry.partitioning.SubHyperplane; 034import org.apache.commons.math3.util.FastMath; 035 036/** This class represents a sub-hyperplane for {@link Line}. 037 * @since 3.0 038 */ 039public class SubLine extends AbstractSubHyperplane<Euclidean2D, Euclidean1D> { 040 041 /** Default value for tolerance. */ 042 private static final double DEFAULT_TOLERANCE = 1.0e-10; 043 044 /** Simple constructor. 045 * @param hyperplane underlying hyperplane 046 * @param remainingRegion remaining region of the hyperplane 047 */ 048 public SubLine(final Hyperplane<Euclidean2D> hyperplane, 049 final Region<Euclidean1D> remainingRegion) { 050 super(hyperplane, remainingRegion); 051 } 052 053 /** Create a sub-line from two endpoints. 054 * @param start start point 055 * @param end end point 056 * @param tolerance tolerance below which points are considered identical 057 * @since 3.3 058 */ 059 public SubLine(final Vector2D start, final Vector2D end, final double tolerance) { 060 super(new Line(start, end, tolerance), buildIntervalSet(start, end, tolerance)); 061 } 062 063 /** Create a sub-line from two endpoints. 064 * @param start start point 065 * @param end end point 066 * @deprecated as of 3.3, replaced with {@link #SubLine(Vector2D, Vector2D, double)} 067 */ 068 @Deprecated 069 public SubLine(final Vector2D start, final Vector2D end) { 070 this(start, end, DEFAULT_TOLERANCE); 071 } 072 073 /** Create a sub-line from a segment. 074 * @param segment single segment forming the sub-line 075 */ 076 public SubLine(final Segment segment) { 077 super(segment.getLine(), 078 buildIntervalSet(segment.getStart(), segment.getEnd(), segment.getLine().getTolerance())); 079 } 080 081 /** Get the endpoints of the sub-line. 082 * <p> 083 * A subline may be any arbitrary number of disjoints segments, so the endpoints 084 * are provided as a list of endpoint pairs. Each element of the list represents 085 * one segment, and each segment contains a start point at index 0 and an end point 086 * at index 1. If the sub-line is unbounded in the negative infinity direction, 087 * the start point of the first segment will have infinite coordinates. If the 088 * sub-line is unbounded in the positive infinity direction, the end point of the 089 * last segment will have infinite coordinates. So a sub-line covering the whole 090 * line will contain just one row and both elements of this row will have infinite 091 * coordinates. If the sub-line is empty, the returned list will contain 0 segments. 092 * </p> 093 * @return list of segments endpoints 094 */ 095 public List<Segment> getSegments() { 096 097 final Line line = (Line) getHyperplane(); 098 final List<Interval> list = ((IntervalsSet) getRemainingRegion()).asList(); 099 final List<Segment> segments = new ArrayList<Segment>(list.size()); 100 101 for (final Interval interval : list) { 102 final Vector2D start = line.toSpace((Point<Euclidean1D>) new Vector1D(interval.getInf())); 103 final Vector2D end = line.toSpace((Point<Euclidean1D>) new Vector1D(interval.getSup())); 104 segments.add(new Segment(start, end, line)); 105 } 106 107 return segments; 108 109 } 110 111 /** Get the intersection of the instance and another sub-line. 112 * <p> 113 * This method is related to the {@link Line#intersection(Line) 114 * intersection} method in the {@link Line Line} class, but in addition 115 * to compute the point along infinite lines, it also checks the point 116 * lies on both sub-line ranges. 117 * </p> 118 * @param subLine other sub-line which may intersect instance 119 * @param includeEndPoints if true, endpoints are considered to belong to 120 * instance (i.e. they are closed sets) and may be returned, otherwise endpoints 121 * are considered to not belong to instance (i.e. they are open sets) and intersection 122 * occurring on endpoints lead to null being returned 123 * @return the intersection point if there is one, null if the sub-lines don't intersect 124 */ 125 public Vector2D intersection(final SubLine subLine, final boolean includeEndPoints) { 126 127 // retrieve the underlying lines 128 Line line1 = (Line) getHyperplane(); 129 Line line2 = (Line) subLine.getHyperplane(); 130 131 // compute the intersection on infinite line 132 Vector2D v2D = line1.intersection(line2); 133 if (v2D == null) { 134 return null; 135 } 136 137 // check location of point with respect to first sub-line 138 Location loc1 = getRemainingRegion().checkPoint(line1.toSubSpace((Point<Euclidean2D>) v2D)); 139 140 // check location of point with respect to second sub-line 141 Location loc2 = subLine.getRemainingRegion().checkPoint(line2.toSubSpace((Point<Euclidean2D>) v2D)); 142 143 if (includeEndPoints) { 144 return ((loc1 != Location.OUTSIDE) && (loc2 != Location.OUTSIDE)) ? v2D : null; 145 } else { 146 return ((loc1 == Location.INSIDE) && (loc2 == Location.INSIDE)) ? v2D : null; 147 } 148 149 } 150 151 /** Build an interval set from two points. 152 * @param start start point 153 * @param end end point 154 * @param tolerance tolerance below which points are considered identical 155 * @return an interval set 156 */ 157 private static IntervalsSet buildIntervalSet(final Vector2D start, final Vector2D end, final double tolerance) { 158 final Line line = new Line(start, end, tolerance); 159 return new IntervalsSet(line.toSubSpace((Point<Euclidean2D>) start).getX(), 160 line.toSubSpace((Point<Euclidean2D>) end).getX(), 161 tolerance); 162 } 163 164 /** {@inheritDoc} */ 165 @Override 166 protected AbstractSubHyperplane<Euclidean2D, Euclidean1D> buildNew(final Hyperplane<Euclidean2D> hyperplane, 167 final Region<Euclidean1D> remainingRegion) { 168 return new SubLine(hyperplane, remainingRegion); 169 } 170 171 /** {@inheritDoc} */ 172 @Override 173 public SplitSubHyperplane<Euclidean2D> split(final Hyperplane<Euclidean2D> hyperplane) { 174 175 final Line thisLine = (Line) getHyperplane(); 176 final Line otherLine = (Line) hyperplane; 177 final Vector2D crossing = thisLine.intersection(otherLine); 178 final double tolerance = thisLine.getTolerance(); 179 180 if (crossing == null) { 181 // the lines are parallel 182 final double global = otherLine.getOffset(thisLine); 183 if (global < -tolerance) { 184 return new SplitSubHyperplane<Euclidean2D>(null, this); 185 } else if (global > tolerance) { 186 return new SplitSubHyperplane<Euclidean2D>(this, null); 187 } else { 188 return new SplitSubHyperplane<Euclidean2D>(null, null); 189 } 190 } 191 192 // the lines do intersect 193 final boolean direct = FastMath.sin(thisLine.getAngle() - otherLine.getAngle()) < 0; 194 final Vector1D x = thisLine.toSubSpace((Point<Euclidean2D>) crossing); 195 final SubHyperplane<Euclidean1D> subPlus = 196 new OrientedPoint(x, !direct, tolerance).wholeHyperplane(); 197 final SubHyperplane<Euclidean1D> subMinus = 198 new OrientedPoint(x, direct, tolerance).wholeHyperplane(); 199 200 final BSPTree<Euclidean1D> splitTree = getRemainingRegion().getTree(false).split(subMinus); 201 final BSPTree<Euclidean1D> plusTree = getRemainingRegion().isEmpty(splitTree.getPlus()) ? 202 new BSPTree<Euclidean1D>(Boolean.FALSE) : 203 new BSPTree<Euclidean1D>(subPlus, new BSPTree<Euclidean1D>(Boolean.FALSE), 204 splitTree.getPlus(), null); 205 final BSPTree<Euclidean1D> minusTree = getRemainingRegion().isEmpty(splitTree.getMinus()) ? 206 new BSPTree<Euclidean1D>(Boolean.FALSE) : 207 new BSPTree<Euclidean1D>(subMinus, new BSPTree<Euclidean1D>(Boolean.FALSE), 208 splitTree.getMinus(), null); 209 return new SplitSubHyperplane<Euclidean2D>(new SubLine(thisLine.copySelf(), new IntervalsSet(plusTree, tolerance)), 210 new SubLine(thisLine.copySelf(), new IntervalsSet(minusTree, tolerance))); 211 212 } 213 214}