001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.math3.geometry.partitioning; 018 019import java.util.HashMap; 020import java.util.Map; 021 022import org.apache.commons.math3.geometry.Space; 023 024/** This class implements the dimension-independent parts of {@link SubHyperplane}. 025 026 * <p>sub-hyperplanes are obtained when parts of an {@link 027 * Hyperplane hyperplane} are chopped off by other hyperplanes that 028 * intersect it. The remaining part is a convex region. Such objects 029 * appear in {@link BSPTree BSP trees} as the intersection of a cut 030 * hyperplane with the convex region which it splits, the chopping 031 * hyperplanes are the cut hyperplanes closer to the tree root.</p> 032 033 * @param <S> Type of the embedding space. 034 * @param <T> Type of the embedded sub-space. 035 036 * @since 3.0 037 */ 038public abstract class AbstractSubHyperplane<S extends Space, T extends Space> 039 implements SubHyperplane<S> { 040 041 /** Underlying hyperplane. */ 042 private final Hyperplane<S> hyperplane; 043 044 /** Remaining region of the hyperplane. */ 045 private final Region<T> remainingRegion; 046 047 /** Build a sub-hyperplane from an hyperplane and a region. 048 * @param hyperplane underlying hyperplane 049 * @param remainingRegion remaining region of the hyperplane 050 */ 051 protected AbstractSubHyperplane(final Hyperplane<S> hyperplane, 052 final Region<T> remainingRegion) { 053 this.hyperplane = hyperplane; 054 this.remainingRegion = remainingRegion; 055 } 056 057 /** Build a sub-hyperplane from an hyperplane and a region. 058 * @param hyper underlying hyperplane 059 * @param remaining remaining region of the hyperplane 060 * @return a new sub-hyperplane 061 */ 062 protected abstract AbstractSubHyperplane<S, T> buildNew(final Hyperplane<S> hyper, 063 final Region<T> remaining); 064 065 /** {@inheritDoc} */ 066 public AbstractSubHyperplane<S, T> copySelf() { 067 return buildNew(hyperplane.copySelf(), remainingRegion); 068 } 069 070 /** Get the underlying hyperplane. 071 * @return underlying hyperplane 072 */ 073 public Hyperplane<S> getHyperplane() { 074 return hyperplane; 075 } 076 077 /** Get the remaining region of the hyperplane. 078 * <p>The returned region is expressed in the canonical hyperplane 079 * frame and has the hyperplane dimension. For example a chopped 080 * hyperplane in the 3D euclidean is a 2D plane and the 081 * corresponding region is a convex 2D polygon.</p> 082 * @return remaining region of the hyperplane 083 */ 084 public Region<T> getRemainingRegion() { 085 return remainingRegion; 086 } 087 088 /** {@inheritDoc} */ 089 public double getSize() { 090 return remainingRegion.getSize(); 091 } 092 093 /** {@inheritDoc} */ 094 public AbstractSubHyperplane<S, T> reunite(final SubHyperplane<S> other) { 095 @SuppressWarnings("unchecked") 096 AbstractSubHyperplane<S, T> o = (AbstractSubHyperplane<S, T>) other; 097 return buildNew(hyperplane, 098 new RegionFactory<T>().union(remainingRegion, o.remainingRegion)); 099 } 100 101 /** Apply a transform to the instance. 102 * <p>The instance must be a (D-1)-dimension sub-hyperplane with 103 * respect to the transform <em>not</em> a (D-2)-dimension 104 * sub-hyperplane the transform knows how to transform by 105 * itself. The transform will consist in transforming first the 106 * hyperplane and then the all region using the various methods 107 * provided by the transform.</p> 108 * @param transform D-dimension transform to apply 109 * @return the transformed instance 110 */ 111 public AbstractSubHyperplane<S, T> applyTransform(final Transform<S, T> transform) { 112 final Hyperplane<S> tHyperplane = transform.apply(hyperplane); 113 114 // transform the tree, except for boundary attribute splitters 115 final Map<BSPTree<T>, BSPTree<T>> map = new HashMap<BSPTree<T>, BSPTree<T>>(); 116 final BSPTree<T> tTree = 117 recurseTransform(remainingRegion.getTree(false), tHyperplane, transform, map); 118 119 // set up the boundary attributes splitters 120 for (final Map.Entry<BSPTree<T>, BSPTree<T>> entry : map.entrySet()) { 121 if (entry.getKey().getCut() != null) { 122 @SuppressWarnings("unchecked") 123 BoundaryAttribute<T> original = (BoundaryAttribute<T>) entry.getKey().getAttribute(); 124 if (original != null) { 125 @SuppressWarnings("unchecked") 126 BoundaryAttribute<T> transformed = (BoundaryAttribute<T>) entry.getValue().getAttribute(); 127 for (final BSPTree<T> splitter : original.getSplitters()) { 128 transformed.getSplitters().add(map.get(splitter)); 129 } 130 } 131 } 132 } 133 134 return buildNew(tHyperplane, remainingRegion.buildNew(tTree)); 135 136 } 137 138 /** Recursively transform a BSP-tree from a sub-hyperplane. 139 * @param node current BSP tree node 140 * @param transformed image of the instance hyperplane by the transform 141 * @param transform transform to apply 142 * @param map transformed nodes map 143 * @return a new tree 144 */ 145 private BSPTree<T> recurseTransform(final BSPTree<T> node, 146 final Hyperplane<S> transformed, 147 final Transform<S, T> transform, 148 final Map<BSPTree<T>, BSPTree<T>> map) { 149 150 final BSPTree<T> transformedNode; 151 if (node.getCut() == null) { 152 transformedNode = new BSPTree<T>(node.getAttribute()); 153 } else { 154 155 @SuppressWarnings("unchecked") 156 BoundaryAttribute<T> attribute = (BoundaryAttribute<T>) node.getAttribute(); 157 if (attribute != null) { 158 final SubHyperplane<T> tPO = (attribute.getPlusOutside() == null) ? 159 null : transform.apply(attribute.getPlusOutside(), hyperplane, transformed); 160 final SubHyperplane<T> tPI = (attribute.getPlusInside() == null) ? 161 null : transform.apply(attribute.getPlusInside(), hyperplane, transformed); 162 // we start with an empty list of splitters, it will be filled in out of recursion 163 attribute = new BoundaryAttribute<T>(tPO, tPI, new NodesSet<T>()); 164 } 165 166 transformedNode = new BSPTree<T>(transform.apply(node.getCut(), hyperplane, transformed), 167 recurseTransform(node.getPlus(), transformed, transform, map), 168 recurseTransform(node.getMinus(), transformed, transform, map), 169 attribute); 170 } 171 172 map.put(node, transformedNode); 173 return transformedNode; 174 175 } 176 177 /** {@inheritDoc} */ 178 @Deprecated 179 public Side side(Hyperplane<S> hyper) { 180 return split(hyper).getSide(); 181 } 182 183 /** {@inheritDoc} */ 184 public abstract SplitSubHyperplane<S> split(Hyperplane<S> hyper); 185 186 /** {@inheritDoc} */ 187 public boolean isEmpty() { 188 return remainingRegion.isEmpty(); 189 } 190 191}